说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性耦合神经网络
1)  Linearly coupled neural networks
线性耦合神经网络
2)  coupled neural networks
耦合神经网络
1.
Fractal boundary in coupled neural networks;
耦合神经网络的分形边界(英文)
2.
Passing through the construction of a special coupled neural network, which can mimic the autowaves in the Pulse-Coupled Neural Networks (PCNNs), we present a new approach (auto waves approach) for solving TSP.
通过构造耦合神经网络,使得由神经元点火所产生的自动波在其中传播,最先到达目的地的波前所走过的路径即为最短路问题的最优解,从而有效地获得了TSP问题的最优解。
3)  Adaptive linear Neural feed-forward decoupling and control
自适应线性神经元网络前馈解耦控制
4)  Linear neural network
线性神经网络
1.
Application of linear neural network in calibration of accelerometer;
线性神经网络在加速度计静态模型标定的应用
2.
A Cointegration Analysis Based on Linear Neural Network;
基于线性神经网络的协整分析
3.
In this paper linear neural network was applied to adaptive noise cancellation technology,and the neural network was trained by least mean square (LMS) algorithm.
针对有源滤波器谐波检测实时精度高的要求,将线性神经网络应用于自适应噪声对消技术,采用最小均方(least mean square,LMS)误差算法对神经网络进行训练,通过线性神经网络实现的自适应格型滤波器,每个神经元对输入基波和谐波信号并行协同处理,对电网高次谐波分量进行滤波和预测,较常规滤波器有更好的实时性和鲁棒性。
5)  linear neural networks
线性神经网络
1.
This method used genetic algorithm optima linear neural networks firstly, then fitting the output of sensor consistency, also putting up a stopping-genetic evolution and adapting-variation methods.
该方法首先使用遗传算法优化线性神经网络的权值,再用神经网络对浓度传感器的输出特性进行拟合,提出遗传进化停滞算子与自适应变异方法,实验验证该方法的有效性。
2.
Firstly the basic principles of linear neural networks and Fourier transform are introduced;meanwhile computational method of linear neural network weights is given;secondly the steps of periodic signals decompositions is given on the basis of linear neural networks.
提出一种利用线性神经网络进行周期信号傅立叶变换的方法。
6)  nonlinear neural network
非线性神经网络
1.
A controlling model of the proposed system is then put forward based on nonlinear neural networks,with a neural identifier and a controller being also designed.
为了在保证行车安全的前提下,提高列车的横向平稳性能,提出一种基于天棚原理的列车横向半主动悬挂系统,并建立了半主动悬挂非线性神经网络控制模型,设计了神经辨识器和控制器。
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条