2) Taylor model
Taylor模型
1.
Comparison of Agrawal and Taylor models for response calculations of aboveground cable excited by HEMP;
地面附近架高线缆HEMP响应计算的Agrawal和Taylor模型比较
2.
A Taylor model was used to simulate the orientation evolution of each grain, and the modelled results were compared with observed results.
采用Taylor模型模拟晶粒取向的演变,并与实验结果比较。
3.
A model of the mushrooming deforma tion was then established based on Taylor model, thus deriving the numerical sol ution to the model, the variations of the variables with time, the profile of th e deformed projectile and .
文中以Taylor模型为基础 ,建立了一个新的弹体撞击变形靶板的墩粗变形分析模型 。
3) Priestley-Taylor model
Priestley-Taylor模型
4) dislocation model
位错模型
1.
Application of dislocation model in fracture prediction of low-permeability reservoir
位错模型在低渗透储层裂缝预测中的应用
2.
Taking the InSAR coseismic deformation field as the constraint and adopting the isotropic elastic half-space dislocation model we made the optimum simulation for the geometric form of the fault in which the Gaize Ms 6.
以InSAR同震形变场为约束,采用各向同性弹性半空间位错模型,利用试错法对2008年西藏改则县扎西错Ms6。
5) dislocation modeling
位错模型
1.
Second,it is essential to select the logical dislocation modeling in accordance with fault movement in certain region.
GPS资料区域构造信息的提取是反演中非常重要的环节,结合一定区域反演时选择符合断层运动的位错模型是必要的,断层运动参数的选取问题,最后是反演的算法问题。
2.
Second,it is es- sential to select the logical dislocation modeling in accordance with fault movement in certain region.
GPS 资料区域构造信息的提取是反演中非常重要的环节,结合一定区域反演时选择符合断层运动的位错模型是必要的,断层运动参数的选取问题,最后是反演的算法问题。
6) negative dislocation model
负位错模型
1.
By use of the regional leveling and GPS observations in Sichuan-Yunnan area during 1994-2006,aided by the negative dislocation model for the elastic block boundaries,combining with the total characteristics of deformation cross-fault,the recent status and intensity of strain accumulation of tectonic blocks and their boundary faults in Sichuan-Yunnan area are studied.
利用1994~2006年川滇地区GPS和区域水准观测资料,借助弹性块体边界负位错模型,结合近年来跨断层形变总体特征,研究了川滇地区构造块体及其边界断裂的应变积累状况与强度。
补充资料:不全位错
不全位错
partial dislocation
不全位错partial disloeation伯格斯矢量不是晶格恒同平移矢量的位错。它是堆垛层错的边界,也即是层错与完整晶体部分的分界线。以fcc晶格为例,最常。二‘。一‘,,,、~,,一一,、,、二加,‘爪1,,,八、~,.I见的是在{111}类型的面上通过操作:①告<112>类型2.“J~阵、“‘,~~曰刁~一~一一’「‘~6、““’~~滑移;②抽去一个{111}层,并使上下两岸复合;③插入一个{111}层。这3种操作均造成层错,此层错的边界即是不全位错。分别称为肖克利不全位错, 1‘,,。、0=~不Lll乙J O负弗兰克不全位错,正弗兰克不全位错,。一告〔“‘〕。一奇〔“‘〕。 不全位错复杂之处在于它必然与层错相联系而存在,所以它的形式和运动均受层错之制约。例如上述肖克利不全位错只能在{111}面上作滑移,而弗兰克不全位错根本不能滑动。除fcc晶体外,在hcp、bcc、金刚石结构及其他许多实际晶体中,不全位错是很常见的。一个全位错可以分解为两个或多个不全位错,其间以层错带相联,通常称为扩展位错。 (杨顺华)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条