1) semi pseudo-metrics
半伪度量
1.
The concept of semi pseudo-metrics on lattices was provided,several kinds of decomposition of a pseudo-metric on a lattice as a sum of two semi pseudometrics are given,the relations of the topologies derived by them were discussd,and the relation between the semi pseudo-metric on lattices and the non-negative modular function on lattices is also discussed.
提出了格上的半伪度量函数的概念,给出了格上伪度量函数的几种分解,即,将伪度量函数表示为2个半伪度量函数之和,讨论了它们在格上的诱导拓扑之间的对应关系,并且研究了格上的半伪度量与非负模函数之间的关系。
2) pseudo-metric
伪度量
1.
The Hausdorff dimension and doubling measure on compact pseudo-metric space;
紧伪度量空间上的Hausdorff维数和加倍测度
2.
Continuity of basic operations on pseudo-metric L~*-Lindenbaum algebra;
伪度量L~*-Lindenbaum代数中基本运算的连续性
3.
General inference rules of truth were given, also, so that a basis was provided for introducing α-similarity and pseudo-metric among propositions.
基于均匀概率空间的无穷乘积,在三值标准序列逻辑系统中引入命题的α-真度概念,讨论了α-真度和α-重言式及矛盾式间的关系,给出了一般真度推理规则,为进一步引入命题间的α-相似度及伪度量奠定了基础。
3) Erceg's pseudo-metric
Erceg-伪度量
4) Pointwise Metric(Pseudo Quasi Metric
(拟)伪度量
5) pseudo-metrics
伪度量
1.
The concept of semi pseudo-metrics on lattices was provided,several kinds of decomposition of a pseudo-metric on a lattice as a sum of two semi pseudometrics are given,the relations of the topologies derived by them were discussd,and the relation between the semi pseudo-metric on lattices and the non-negative modular function on lattices is also discussed.
提出了格上的半伪度量函数的概念,给出了格上伪度量函数的几种分解,即,将伪度量函数表示为2个半伪度量函数之和,讨论了它们在格上的诱导拓扑之间的对应关系,并且研究了格上的半伪度量与非负模函数之间的关系。
6) pseudometric
伪度量
1.
And we show the relation between intuitionfic similarity and pseudometric.
同时研究了直觉相似关系和伪度量之间的联系。
补充资料:伪度量
伪度量
pseudo -metric
伪度量l脚川0一“抢川c;nce聊Me,。业],集合X上的 一个非负实值函数p,定义在X的所有元素对的集合上(即定义在XxX上),满足下列三个条件,即所谓的伪度量公理(初。璐for a Pseudo一me-trlc): a)若x=夕,则p(x,夕)=0: b)P(x,y)二P(y,x); e)户(x,z)成p(x,y)+户(y,:),其中x,y,z是X的任意元素. 并未要求p(x,夕)二O蕴涵x二夕.x上的伪度量p确定X上一个拓扑结构如下:点x属于集A CX的闭包,如果p(x,A)二O,这里川x,A)二inf{烈x,y):少‘A}·这个拓扑结构是完全正则的,但不一定是Hausdo湃拓扑:单点集可以是非闭集.任何完全正则的拓扑结构均可由一族伪度量给出.即是相应伪度量拓扑的格沦意义下的并集.同样,伪度量族可以用来定义、说明以及研究一致结构.【补注】亦见度最(功d巧c).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条