1) miktoarm star copolymer
星形杂臂聚合物
1.
This dissertation highlights the development of star polymer, miktoarm star copolymer and dendritic polymer with unique structures.
本文简述了星形聚合物、星形杂臂聚合物及树形聚合物三类特殊结构的非线形聚合物的研究进展,同时也介绍了高分子液晶的研究现状,并将非线形结构与高分子液晶结合到同一体系,设计并成功地合成了几类特殊结构的非线形高分子液晶。
2) heteroarm star-shaped polymer
杂臂星形聚合物
1.
In contrast, heteroarm star-shaped polymers were usually A_nB_n which arm number of A and B were same.
本文采用原子转移自由基聚合(ATRP),制备杂臂星形聚合物(聚苯乙烯)_n-(聚丙烯酸乙酯)_m。
3) Amphiphilic heteroarm star-shaped polymer
两亲性杂臂星形聚合物
1.
Amphiphilic heteroarm star-shaped polymer was synthesized by the use of polyfunctional chain transfer agent via sequential free radical polymerization in three steps.
最后,将所得杂臂星形聚合物的PtBMA链段水解得到了两亲性杂臂星形聚合物。
4) Amphiphilic Star Copolymers
星形杂臂共聚物
1.
The Advance on the Synthesis of Star and Amphiphilic Star Copolymers;
星形和星形杂臂共聚物的合成进展
6) Miktoarm star-shaped copolymer
杂臂星型聚合物
补充资料:星形-三角形变换
一种简单的电路间等效变换。 以阻抗为参数的3个电路元件的星形连接如图1所示, 三角形连接如图2所示。当这两种连接有相同的外特征时,二者便可等效互换。互换的规则是:将星形连接变换成三角形连接,要求后者的参数与前者的参数之间有如下的关系,即 (1)
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条