1) tensor map
张量映射
2) expansion mapping
扩张映射
1.
In this paper, several new fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings in compact metric space are introduced.
本文得到几个新的扩张映射的不动点定理和紧距离空间中映射对的公共不动点定
2.
The fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings are given in 2 metric spaces under the condition of weakening mappings continuance.
在2—距离空间中减弱映射的连续性条件下,给出了扩张映射的不动点定理及扩张映射对的公共不动点定理。
3) Expanding map
扩张映射
1.
In this paper, we study the relationship between the positive expansiveness of a kind of self-maps on a circle and the expansiveness of their inverse limits, and obtain that, for every surjective continuous map f,the inverse limit of f is expansive if and only if f is topologically conjugate to an expanding map.
本文研究了圆周上一类自映射f的正向可扩性与其道极限的可扩性间的联系,得出圆周上的连续满射f的逆极限可扩等价于f拓扑共轭于扩张映射。
4) tensor product of random maps
随机映射的张量积
5) nonexpansive mapping
非扩张映射
1.
Approximations for the common fixed points of finite nonexpansive mappings in the uniformly convex Banach spaces;
一致凸Banach空间中有限个非扩张映射的公共不动点的逼近
2.
Iteration process of nonexpansive mappings;
非扩张映射不动点带误差的迭代过程
3.
Convergence of sequence of nonexpansive mapping;
非扩张映射迭代序列及其收敛性
6) Nonexpansive mappings
非扩张映射
1.
Viscosity approximation of fixed point for nonexpansive mappings
非扩张映射不动点的粘性逼近方法
2.
An iterative scheme with errors involving three nonexpansive mappings is considered.
讨论了3个非扩张映射的带误差的迭代格式,在一致凸Banach空间中,在比紧性弱的条件下,通过这种格式,强弱收敛到3个非扩张映射的公共不动点。
3.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
补充资料:Darboux张量
Darboux张量
Darboux tensor
L冶均.仪张皿【L冶内脚xte理刃r;及aP6y Te.3op」 一个3阶共变对称张量, e_。助_。一玉述型丛兰些迁丛、 一二p,一,。:4K其中气口是曲面的第二基本形式的系数,K是Ga璐s曲率·瓦,,和戈是它们的共变导数.最先在特殊坐标系下研究这个张量的是GDarboux(【11). 与Darboux张量有关联的是三次微分形式 3凡,0·,7过u’du叼u’一”·,尹“u“du户du’一贡贡”·,du’血办山’·在曲面的一条曲线上计值的这个形式称为Darboux不变量(Darboux invariant).在负常曲率曲面上,E墩r.b~不变量重合于其上任一曲线的微分参数(d汪reren.t诫para叮此ter) .Darboux不变量处处为零的曲线称为L均rboux曲线(Darboux ctlrve).在负曲率的非直纹面上只存在一族实Darbeux曲线.在正曲率的曲面上存在三族实Dar加ux曲线.Dar比ux张量处处有定义且恒为零的曲面称为Dar比ux曲面(Da迁幻ux sul伪ee).E冶r比ux曲面是不可展开成平面的二阶曲面.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条