1) Direct electron transfer
直接电子传输
2) line electron transport
直线电子传输
1.
Micro-and nanometer composite structure and line electron transport theo.
同时介绍了微/纳米复合结构和直线电子传输对光电转换效率提高的作用。
3) direct transmission
直接传输
1.
The direct transmission method is put forward by the use of FoxBASE and AutoLISP & Auto CAD.
在计算机辅助设计 (CAD)中 ,针对大量的表格和线图数据的传输与查询 ,提出了利用FoxBASE和Autolisp与AutoCAD的直接传输方法。
2.
The total energy consumption rates of direct transmission, hop-by-hop transmission, direct-hop transmission and energy-balanced transmission are compared, and the drawbacks of the above transmissions is dentified respectively.
分别对直接传输、多跳传输、混合传输以及能量平衡传输的总能量消耗进行了比较,并指出了它们各自的缺点,从而提出了一种基于可变范围传输策略的能量优化与能量平衡算法。
4) direct electron transfer
直接电子传递
1.
Glucose oxidase(GOD) is immobilized on the Au/CPE by absorption exhibiting a well-defined behavior of direct electron transfer.
对修饰电极检测葡萄糖的机理进行了讨论,并制备了基于检测氧化电流的直接电子传递型葡萄糖传感器。
2.
Direct electron transfer between redox proteins and electrodes is of practical and theoretical interest for the realization of the biological energy transfer and substance metabolism.
研究蛋白质与电极之间的直接电子传递对了解生物体内的能量转换和物质代谢具有重要的理论和实践价值。
3.
And the results of cyclic voltammetry with different scan rates revealed that the direct electron transfer is a reaction controlled by the surface adsorption process.
该修饰电极的循环伏安曲线上出现一对准可逆的氧化还原峰,说明碳纳米管能够很好地促进Mb在电极表面的直接电子传递。
5) VSTEP Vertical to Surface Transmission Electro C Photonic device
从垂直传输到平面传输的光电子器件
6) Electron transport
电子传输
1.
Progress of 1,3,4-oxadiazole derivative electron transport functional materials
噁二唑类电子传输材料的研究进展
2.
Unlike phenothiazine,phenothiazine-5-oxide(M3)is a specific molecular which may be a good electron transporting unit due to the conversion of electron-donating sulfur atom to electron-withdrawing sulfoxide group.
研究吩噻嗪衍生物单体的拉电子特性对聚合物P1的电子传输性能的影响,合成不含吩噻嗪衍生物的同一类型聚合物P2。
3.
A new organic electron transport material, N-ethyl-4-acetylaminonaphthalimide (EAAN)was synthesized as the electron transport layers in organic EL devices.
报道新型有机电子传输材料N-乙基-4-乙酰氨基萘亚胺及其在有机电致发光器件中的电子传输性。
补充资料:电子-电子双共振
在垂直静磁场H的方向,施加两个微波电磁场:①较弱的微波电磁场,激发电子从能级2向能级3跃迁,不致于饱和;②强的微波电磁场,激发电子从能级1向能级4跃迁,使达到饱和,从而导致能级4的电子转移至能级3,以观察反映2→3跃迁的电子自旋共振信号强度的变化,故称为电子-电子双共振。它与电子-核双共振不同之处是不涉及核的跃迁,并且观察的与电子自旋共振有关的能级和未观察的跃迁能级之间无共享的公共能级。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条