说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Taylor本质谱
1)  Taylor essential spectrum
Taylor本质谱
2)  taylor's spectra
Taylor谱
3)  Taylor joint spectrum
Taylor联合谱
1.
For T∈Ln_ com(H), let sp(T) denote the Taylor joint spectrum, and φ_i (i=1, 2, …, n) be the surjective linear map on L(H) and satisfy φ_i(T_l)φ_j(T_k)=φ_j(T_k)φ_i(T_l) if and only if T_lT_k=T_kT_l, i, j=1, 2, …, n.
设T∈Lncom(H),sp(T)表示Taylor联合谱,φi(i=1,2,…,n)是L(H)上满的线性映射且满足φi(Tl)φj(Tk)=φj(Tk)φi(Tl)当且仅当TlTk=TkTl,i,j=1,2,…,n。
4)  Taylor medium method
Taylor介质法
5)  essential spectrum
本质谱
1.
Exploring the structure of the spectrum of Toeplitz operator Tφ on Hardy space H2(Γ),applying the elaborate structure of the spectrum of operators,obtaining the structure of the spectrum σ(Tφ),the essential spectrum σe(Tφ),Weyl spectrum σw(Tφ),the left essential spectrum σle(Tφ),Kato spectrum σk(Tφ),non-closed range spectrum σd(Tφ),the point spectrum,σp(Tφ) and so on of Toeplitz operator Tφ.
研究Hardy空间H2(Γ)上Toeplitz算子Tφ的谱的结构,利用算子谱的精密结构的分析方法,得到Toeplitz算子Tφ的谱σ(Tφ)、本质谱σe(Tφ)、Weyl谱σw(Tφ)、左本质谱σle(Tφ)、Kato谱σk(Tφ)、值域非闭谱σd(Tφ)、点谱σp(Tφ)等的结构。
2.
This paper studies the intersection relations of the right essential spectrum of two quasisimilar operators.
本文研究两个拟相似算子的右本质谱之间的相交关系。
3.
By means of the analysis of the precise constitution of spectrum of operators,this paper gives some sufficient conditions for equality of essential spectrum of two quasisimilar semidominant operators,these results improves and generalizes the results of L.
讨论两个拟相似半控制算子的本质谱之间的关系,应用算子谱的精密结构的分析方法,给出拟相似半控制算子的本质谱相等的若干充分条件,所得结果改进和发展了L。
6)  Browder essential spectrum
Browder本质谱
补充资料:Taylor级数


Taylor级数
Taylor series

介yl优级数fTa叭优义对.;Te翻几opap朋] 幂级数 么厂n)(义。、 2—吸X一X。,.吸i, 月三on!其中数值函数f定义在点x。的某邻域,且在该点有各阶导数Taylor级数的部分和是介娜叮多项式(T:、ylor Polynomial). 如果戈,是复数,而函数.厂定义在为,的复数邻域内卜!一在戈,有各阶导数,那么存在从,的邻域,使得j在其中是它的Taylor级数(l)之和(见幂级数(po忧r series)).但是,如果x,,是实数,f是定义在戈,的某实数邻域内且在x。点有各阶导数,那么可能不存在戈,的邻域,使得.f在此邻域内是它的Taylor级数之和.例如,函数 厂。一l‘·’,若二并。, /《x)二叮(2) 仁o,若‘二0在整个实轴上是无穷次可微的,_目.仅在x二0处等于O,但它的rray10r级数的一切系数在该点均为0 如果某函数在一点的对称邻域内是一幂级数之和.那么这样的级数是唯一的,而且一定是这函数在该点的毛Lylor级数.然而,同一个幂级数可以是不同实函数的Ta贝or级数.事实上,系数全为O的幂级数既是全实轴上恒为0的函数的rnlylor级数,也是函数(2)在点O的Tay】or级数. 毛州or级数(l)在区间(x。一h,x。+h)上收敛于实值函数.f的一个充分条件是,f在一该区间上的一切导数均有公共的界. 丁aylor级数可以推广到线性赋范空间中将子集映为类似空间的映射上去,特别是可推广到多元数值函数以及以矩阵为变量的函数上去. B.Tay】or于1715年发表了级数(1),而经过简单变换可以转化为级数(1)的一级数,是由JohannlBemoulh于1694年发表的、参考文献 !111产Ll卜皿,B .A.,Ca八oB~浦,B .A,CeH月o。,B X.、Ma代MaT”,ecK浦aHa皿“3,M.,1979. 【2 JI」“‘~‘戚,C .M.,K叩c MaTeMam呵ecK俐aHa- ,,扣a.3H3月.,T.l,M.,1983(‘扣译本:C.M.尼 科尔斯基,数学分析教程,第一卷,一、二分册,人 民教育出版社,1980一1981), J’I,八.K邓P,B从eB撰醉卜注】关于参考文献,亦见几yfor公式(Taylorfomlu】a).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条