说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不等间距快速离散傅里叶变换
1)  non-equispaced fast Fourier transform
不等间距快速离散傅里叶变换
2)  Nonuniform fast Fourier transformation(NUFFT)
不等间距快速傅立叶变换
3)  DFT (Discrete Fourier Transform)
离散快速傅立叶变换
4)  Fast Fourier Transform Algorithm
快速离散傅立叶变换
1.
The information of the spot welding nugget is included in the welding current waveform,the diameter of the nugget is related to the spectrum value of the Fast Fourier Transform Algorithm(FFT)for current waveforms.
点焊焊接电流波形中包含了熔核形成及熔核大小的相关信息,电流波形快速离散傅立叶变换(FFT)后的谱线幅值,与点焊熔校直径之间有明显的对应关系。
5)  discrete time Fourier transform
离散时间傅里叶变换
6)  fast fourier transform (FFT)
快速傅里叶变换
1.
Then the fast Fourier transform (FFT) is adopted to calculate the Fourier coefficients of the fundamental.
介绍了电容型设备介质损耗因数在线监测的原理以及监测系统的组成,分析了测量结果的误差来源以及提高测量精度的方法,以谐波分析法为基础,采用基于DSP的跟踪频率变化交流同步采样技术,确保每个周期采样128个点,用快速傅里叶变换(FFT)求出电压、电流信号基波傅里叶系数,通过RS-485总线传给上层变电站信息管理系统。
2.
The Fast Fourier Transform (FFT), developed originally by Cooley and Tukey , is one of the Discrete Fourier Transform (DFT) algorithms .
由Cooley和Tukey提出的快速傅里叶变换算法(Fast Fourier Transform,FFT)是针对数据长度N等于2的整数次幂的算法,也即基2的FFT算法。
补充资料:N点有限长序列的离散傅里叶变换
      时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
  
  (1)
  式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
  
   (2)
  式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
  
  由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
  
  DFT的原理  是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N
  
  DFT的主要性质  共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
  
  
  DFT的快速算法  又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条