说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 晶体衍射理论
1)  the theory of crystal diffraction
晶体衍射理论
2)  crystal diffraction
晶体衍射
3)  diffraction by crystal
晶体衍射
4)  diffraction theory
衍射理论
1.
This paper aims at proving the feasibility of microinter diameter measurement through the analysis of laser diffraction theory.
分析了激光衍射理论在微内径测量上是可行的,并以此为指导研制可实际测量的激光微内径测试仪,通过实验测量的数据并对其进行精度分析,证明设计方案及原理是可行的。
2.
And,using the planar hologram diffraction theory,the coupled wave equations of the volumetric hologram grating diffraction have been derived and the diffraction efficiencies obtained.
将体全息光栅视为许多平面全息光栅的集合,利用平面全息衍射理论导出体全息光栅衍射的耦合波方程,并得到其衍射效
3.
The propagation properties of the bottle beam were described based on geometrical optical theory,interferential theory and diffraction theory.
分析几何光学理论、干涉理论和衍射理论对局域空心光束传输特性的描述。
5)  diffraction crystallography
衍射晶体学
6)  crystallorgrm
晶体衍射图
补充资料:晶体X射线衍射
      X 射线通过晶体时产生强度随方向而变的散射效应,其强度变化是由于次生电磁波互相叠加和干涉而造成的。
  
  简史  德国物理学家 M.von劳厄于1912年发现上述现象,他设想,如能找到一种波长为 10-8厘米的电磁波,让它通过晶体,必能发生衍射现象,能提供晶体内原子排布的信息。那时曾有些人为验证 X射线是电磁波而采用普通光栅作衍射实验而屡遭失败。由此劳厄想到,X射线是一种波长比可见光短得多的电磁波,它可能是晶体衍射的合适射线。通过实验,劳埃和助手们证实了他们的设想,他因此获得1914年的诺贝尔物理学奖。
  
  散射  X射线是一种波长很短(约为10-8厘米)的电磁波,当它作用到物质上时,使物质的原子中的电子在其电磁场的作用下发生振动,而这些周期振动的电子随即向周围空间发出电磁波,即次生X射线,从而引起散射。原子序数大的原子具有较多的电子,其散射能力较强。原子散射能力的大小与散射方向有关,在入射线的方向上,原子的散射能力最强,随着角度的增大,逐渐减弱。通常,一种原子的散射能力用原子散射因子f表示。X射线衍射的原子散射因子fX与原子序数Z 成正比, 散射强度则与Z2成正比。
  
  反常散射  在一般情况下,入射的X射线的频率高于原子的吸收边(见X射线荧光光谱分析法),电子在原子中的束缚能比X射线光子的能量小,这时的电子可看成自由电子,由此产生的散射称正常散射,原子散射因子用f0表示。若考虑原子中的电子实际上是受束缚的,则其散射能力应有校正而需要考虑反常散射效应,其相应原子散射因子可用下式表示:
  
  
  式中Δf′和Δf″分别为反常散射的实数和虚数校正项,其数值与所用 X射线的波长有关。当原子的某一个吸收边与入射X射线的波长相近时,Δf′和Δf″的数值最大。反常散射可用于测定分子的绝对构型,现在已发展成为晶体结构分析的重要方法之一。
  
  劳厄方程  劳厄提出的描述晶体X射线衍射的基本条件的一组方程式,常用于晶体结构的研究中。劳厄方程的向量表达式如下:
  
  
  式中a、b、c为决定三维点阵结构的三个基本向量,s0和s分别为入射线和衍射线方向的单位向量,h、k、l是三个正整数,通常称衍射指数。λ是X射线的波长。劳厄方程也可用标量的形式表达:
  
  
  式中α0、β0、γ0和α、β、γ分别为入射线及衍射线与晶胞的三根轴a、b、c的夹角。
  
  布喇格方程  英国物理学家W.L.布喇格于1913年提出的一个比较直观的 X射线衍射方程式。布喇格把晶体的点阵结构看成许许多多相互平行的"面网"(简称晶面)。由相邻两个面网所反射的X射线,只有当其光程差是 X射线波长的整倍数时才互相增强。由附图可以看出,相邻两个面网所反射的X射线,其光程差为:
  
  
  式中d为相邻两个面网的距离;θ为入射线或反射线与晶面的交角。因此,衍射的必要条件是:
  
  
  式中n为1,2,3,...等正整数。此式就是著名的布喇格方程。布喇格方程与劳厄方程尽管表达的方式不同,但其基本原理的实质是相同的。
  
  

参考书目
   W. L. Bragg,The Development of X-Ray Analysis,Bell, London, 1975.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条