1) non-symmetric perturbation
非奇性扰动
2) continue-time singular system with non-linear perturbation
非线性扰动的时间连续奇异系统
4) nonlinear perturbation
非线性扰动
1.
Guaranteed cost control for uncertain descriptor system with nonlinear perturbation
带有非线性扰动的不确定广义系统的保性能控制
2.
In this paper,we construct Lyapunov functional,the delay-dependent robust stability criterions for time-delay systems with nonlinear perturbation are established based on Lyapunov stability theory,and the results are presented in the form of LMI problem.
本文针对具有非线性扰动的时滞系统,通过构造Lyapunov泛函,利用Lyapunov方法,推导出系统时滞依赖鲁棒稳定性判据。
3.
This paper discusses the nonlinear perturbation of the initial-boundary value problems for a class of nonlinear pseudoparabolic equations Δu+ut-ut-f(x,t,u)=Fx,t,u,ux_i.
非线性伪抛物方程和一些重要的物理过程有着密切的关系,研究了一类伪抛物方程Δu+ut-ut-f(x,t,u)=F x,t,u,xui初边值问题的非线性扰动问题。
5) nonlinear perturbations
非线性扰动
1.
Robust control of networked stochastic systems with nonlinear perturbations;
具有非线性扰动的网络化随机系统鲁棒控制
2.
H-infinity robust stability for uncertain systems with multiple time-varying delays and nonlinear perturbations;
带非线性扰动的不确定多时变时滞系统H_∞鲁棒稳定性
3.
Asymptotic behavior of solutions for nonlinear perturbations of linear second order difference equation;
二阶线性差分方程非线性扰动解的渐近性质
6) singularly perturbed
奇异扰动
1.
By means of inverse proof, it is proved that u ε=m 1p-1 ε ω ε exists at least two local maximum points for a singularly perturbed Neumann problem on a symmeric domain.
利用反证法证明 ,在奇异扰动Neumann问题上 ,uε =mε1p- 2 wε 至少有两个局部最大值点 。
2.
In this paper, symmetric solution with exactly one local maximum point is constructed for a singularly perturbed Neumann problem.
讨论了在对称区域上 ,奇异扰动Neumann问题只有一个局部最大值点的对称解 。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条