1) the distribution of root system
根群分布
2) root system disribution and groowth
根群分布与生育
3) roots/root distribution
根/根分布
4) root distribution
根系分布
1.
Effect of pesticides application on controlling of tomato root distribution in subsurface drip irrigation;
番茄地下滴灌施药对根系分布的调控效应试验研究
2.
Preliminary study on the effects of root distribution and fertilizing methods on growth and development of rice;
根系分布及施肥模式对水稻生长发育的影响研究初报
3.
Impacts of different water supplied conditions on root distribution,yield and water utilization efficiency of winter wheat;
不同供水条件对冬小麦根系分布、产量及水分利用效率的影响
5) root distribution
根分布
1.
The shortage of the "one shot test"approach using sylvesters resultant matrices and Bezoutian matrices is pointed out,and the sufficient and necessary conditions for checking the invariance of root distribution of interval polynomial is suggested.
指出了使用Sylvester结式和Bezoutian阵的一次试验法的不足,提出了判定区间多项式根分布不变性的充要条件,它只需其中四个多项式的根分布,便可检验整个区间多项式的根分布。
6) root system distribution
根系分布
1.
Study on the relationship between salt content of soil and both Apocynum root system distribution and plant growth;
土壤盐分与罗布麻根系分布及植株生长之间关系的研究
2.
We did the investigation of plant root system distribution and the dissection experiment of the temporary plants on 6\|year\|oldpingguoli in early harvest garden.
对 6年生苹果梨早期丰产园进行了根系分布调查和临时株树体分解。
补充资料:半群类中的根(根基)
半群类中的根(根基)
radical in a class of semigroups
半群类中的根(根基)1.山a社加ac比sof胭”i-孚仪.声;p戮从.KaJI.“月acce no月yI卫抓n] 把每个半群(sen卫,gro叩)S映到一个合同(见合同(代数学中的)(congrt此noe(ina琢bm))p(S)且具有下列性质的函数p:l)若S与T同构且p(S)=O(O表示相等关系),则p(T)“氏2)若O为S上的合同且户(S/0)=0,则户(S)缤夕;3)户(S/户(S))=0.若l)和3)成立,则2)等价于 s叩{户(S),0}/口〔户(S/0)对每个合同0成立.半群S称为p半单的(p .5口刊-sin甲le),如果p(S)二0 .p半单半群类包含单元素半群并且对同构和次直积封闭.反过来,每个具有这一性质的半群类一定是对某个根p的p半单半群类.若风S)~SxS,则S称为p根(p一份由以1).与环的情形不同,在半群中根不是被相应的根类决定的.若在根的定义中仅限于考虑由理想定义的合同,那么又有根的另一个概念,此时对应的函数在每个半群中取一个理想(j山川), 设介为一个半群类,它对同构封闭并包含单元素半群,则把每个半群S对应到其上的所有满足S/e〔只的合同口的交的函数就是一个根,称为p,.类只与P、半单半群类重合,当且仅当它对次直积封闭.在此情况下,S/p:(S)是S的落在介中的最大的商半群(见仿样(即lica)). 例.设究为有忠实的不可约表示(见半群的表示(化p献川以石。n ofa~一gro叩))的半群的类,则 P:(S)“ ={(a,b):a,b“S,(a,b)任林(as)自拼(bs)对一切:。sU必圣,其中 #(a)={(x,夕):x,夕任S,a“x二a“夕对某m,n)o}. 定义在给定半群类上对同态象封闭的根已被研究过 对每一个根p都有左多边形类艺(川(见多边形(么半群上的)(poly即n(o呢ra~id〕))设A是一左S多边形,S上的合同口称为A零化的(A-an司云加面g),如果(又,召)‘0蕴含对一切a‘A,又“二产a.所有A零化合同的最小上界还是一A零化合同,它记作A朋A.类工(p)按定义由所有这样的左S多边形A组成,它满足p(S/八币rA)=0,S遍历所有半群的类.若0为S上的合同,则一左(5/0)多边形在Z(p)内,当且仅当它作为S多边形时也属于艺(p).反过来,若已给定具有这些性质的左多边形类艺而名(S)为艺中所有左S多边形的类,则函数 f SxS.若艺fs)为空的,““’一1,瓜)Ann‘,其他情“,就是一个根.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条