1) total labelling
全标号
1.
Motivated from the edge-magic total labelling defined by Kotzig and Rosa(1970), we define a nearly k-magic coloring f of a graph G with p vertices and q edges that is a bi- jection from V(G)∪E(G)to {1,2,···p+q} such that |f(u)+f(v)-f(uv)|≤k whenever uvεE(G).
借鉴于Kotzig和Rosa在1970年定义的边魔术全标号,我们给具有p个顶点和q条边的图G定义了一个新的染色标号,叫作k-魔术染色f,其中f是一一映射V(G)∪E(G)→{1,2,…,p+q},使得任何边uv∈E(G)满足f(u)+f(v)=k+f(uv),并得到超级k-魔术染色的概念。
3) (p,1)-Total number
全标号数
1.
The minimum span of a(p,1)-total labelling of G is called the(p,1)-total number and denoted by λpT(G).
图G的所有(p,1)-全标号中最小的跨度,称为图G的(p,1)-全标号数,记为λpT(G)。
4) (d,1)-total labelling
(d,1)-全标号
1.
The (d,1)-total labelling number λrd(G) of a graph G is the width of the smallest range of integers that suffices to label the vertices and edges of G such that no two adjacent vertices or two adjacent edges have the same labels and the difference between the labels of a vertex and its incident edges is at least d.
图G的一个k-(d,1)-全标号是一个映射f:V(G)UE(G)→︱0,1,…,︱使得任意2个相邻的点和相邻的边有不同的值,且任一对相关联的点和边的值的差的绝对值至少为d。
5) (p,1)-Total labeling
(p,1)-全标号
1.
A(p,1)-total labeling of a cancel G is a mapping f:V(G)∪E(G){0,1,2,…k} such that:any few adjacent vertices of G receive distinct integers;any few adjacent edges of G receive distinct integers;and a vertex and its incident edge receive integers that differ by at least p in absolute volue.
一个图G的(p,1)-全标号是一个映射f∶V(G)∪E(G)→{0,1,…k},使得:G的任两个相邻的顶点得到不同的整数;G的任两个相邻的边得到不同的整数;一个点和它的邻边得到的整数至少相差p。
6) (d,1)-total labeling
k-(2,1)-全标号
补充资料:全受全归
1.语出《礼记.祭义》:"父母全而生之,子全而归之,可谓孝矣。不亏其体,不辱其身,可谓全矣。"封建礼教认为人的形体来自父母,应当以完全无亏的身体,还之父母。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条