说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟线性退化抛物型方程组
1)  Quasi-linear degenerate parabolic system
拟线性退化抛物型方程组
2)  quasilinear degenerate parabolic equations
拟线性退化抛物方程
1.
This paper is devoted to the study of the Dirichlet problem of quasilinear degenerate parabolic equations in one dimension, and by using the contraction semigroup method,the existence of the weak solution is obtained.
考虑了一类一维拟线性退化抛物方程的Dirichlet问题,证明了其弱解存在性,主要思想是采用了压缩半群的方法,首先构造了一个耗散算子Ao,然后用正则化方法和椭圆方程理论。
3)  nonlinear degenerate parabolic equation
退化非线性抛物型方程
1.
Lions has proved the existence and uniqueness of global solutions to the initial-boundary value problem for a class of nonlinear degenerate parabolic equation by mean of compactness principle,but the decay property is considered by few people.
L ions用紧致性方法证明了一类退化非线性抛物型方程初边值问题整体解的存在唯一性,但解的衰减性很少有人考虑。
4)  quasi linear parabolic systems
拟线性的抛物型方程组
1.
Several mathematical models for reaction process of reaction bonded silicon carbide are set up, which are quasi linear parabolic systems.
考虑不同因素的影响 ,建立了反应烧结碳化硅反应烧结过程的一组数学模型 ,它们可表述为一个拟线性的抛物型方程
5)  semilinear parabolic systems
拟线性抛物型方程组
1.
Blow-up rate estimates for semilinear parabolic systems;
拟线性抛物型方程组爆破解的速率估计
6)  quasilinear degenerate parabolic equation
拟线性退缩抛物方程
1.
The present paper presents some comparison theorems on a class of quasilinear degenerate parabolic equations and by means of the results obtained in this paper a theorem on the strict monotonicity of generalized solutions is proved.
建立一类拟线性退缩抛物方程的比较原理 ,用其证明了广义解的某种严格单调
补充资料:退化抛物型方程


退化抛物型方程
degenerate parabolic equation

  退化抛物型方程【血留搜犯加声口加血闰皿垃翔;肠甲0岌-几e二oe naPa6o朋,ee切e yPa朋e一翻e】 偏微分方程 F(r,x,Du)=0,其中函数F(t,x,q)有下述性质:对于某个偶自然数P,对于所有实的亡,多项式 艺主生上丛卫业月一(i:、二 刁q:的所有的根又有非正实部,并且,对于某个着护O,t,x和Du,对于某个根又有Re又=0,或者对于某个t,x和加,最高次护/P的系数为零.这里t是自变量,它通常被解释为时间;x是n维向量(x,,…,x,):u(t,x)是未知函数;“是多重指标(“。,::,“‘,仪。);加是分量为 日l,I,, 刀区材=一:,二二气二-二,--一二尸- 一日r“,日x户‘…刁x矛·的向t,其中p“。+,各“‘(“,J“I一“。+“1+…+“。;q是分量为q二的向量;亡是n维向量(亡:,…,氛);(i幼“’=(i七1):’…(i七。)’‘.亦见退化偏微分方程(山generate part运1由晚砚t训闪业山n)及其参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条