1) I-involutive rings
I-对合环
2) I-ring
I-环
3) involutive ring
对合环
1.
In this paper we have given some results about involutive rings, and have proved that the residue classring Z[i]/(α) is an involutive ring if and only if α follows Gauss integer number: 1+i, (1+i)~2.
讨论了对合环,给出并证明了Gauss整数环Z[i]中模α的剩余类环Z[i]/(α)为对合环的充要条件。
4) proper involution
正对合环
1.
We show that rings with a proper involution are semi-prime ring and algebra with proper involution is semi-prime algebra.
研究了正对合环的典型例子和若干性质,得出正对合环是半素环,从而证出带有正对合的代数是半素代数,从而改进了Kaplansky的结论。
5) involution of a ring
环的对合
6) cyclic involution
循环对合
补充资料:合环
1.犹周围。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条