1)  triangle-free graph
无三角形的图
1.
In this paper, we show that for a triangle-free graph G,χ(P3(G))≤β(G), where β(G) is the vertex covering number of G.
在这篇文章中,我们得到对于一个无三角形的图G,χ(P3(G))≤β(G),其中β(G)表G的点覆盖数。
2)  aromatic hydrocarbon free
无“三苯”
3)  triangle-free
无三边形
1.
A lower for the number of non-essential edges of the triangle-free minimally 3-connected graph and the characterization of the graph that reach the lower bound are given.
给出无三边形极小3连通图G的非基本边数的下界︱G︱+3,并证明图G的非基本边数达到下界当且仅当G同构于K3,3。
4)  triangle-free
无三角形
1.
In this paper, the existence of large cycles in 2-connected triangle-free graphs is discussed.
研究了 2 连通无三角形图中长圈的存在性 。
2.
It is proved that if G∈C(6,5) and G is triangle-free,then G is supereulerian if and only if G can not be contracted to some well classified special graphs.
证明了:若无三角形的图G∈C(6,5),则G是超欧拉的当且仅当G不能收缩为几个特殊的图。
5)  toluene free solvent
无三苯溶剂
6)  triangle free graph
无三角形图
1.
n) and discusses the su per bound of Chromatic numbers for triangle free graphs,when f(m,n) denote the minimun number of vertices of a graph in which its chromatic namber is m and girth is no less than n.
并探讨了无三角形图色数的上界。
参考词条
补充资料:等边三角形相图
分子式:
CAS号:

性质: 是在三组分相图中表示各种组分的组成的一种方法。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。