1) bordered diagonal matrices
加边对角矩阵
1.
The problem on the construction of bordered diagonal matrices An and An with common diagonal elements α2>α3>…>α(n-1),α≠αn in which the given 2n real numbers λ1>λ2>…>λn and μ1>μ2>…>μn are the eigenvalues of the matrices An and An,respectively.
研究了由给定的2n个实数λ1>λ2>…>λn与μ1>μ2>…>μn来构造加边对角矩阵An和An*的问题,使得An以λ1,λ2,…,λn为特征值,A*n以μ1,μ2,…,μn为特征值,并且有公共对角元素α2>α3>…>αn-1,αn≠αn*。
2) block bordered diagonal matrix
对角加边矩阵
1.
Based on the block bordered diagonal matrix structure, this paper presents a new discrete decomposition algorithm for the reactive-power optimization in a multi-area power system.
基于对角加边矩阵结构,提出了一种新的多区域电力系统离散无功优化分解算法。
3) bordered block diagonal
带边块对角矩阵
4) matrix diagonal loading
矩阵对角加载
1.
Generalized least mean p-norm beamforming method based on matrix diagonal loading and leakage iteration;
基于矩阵对角加载与泄漏迭代的广义最小平均p范数波束形成方法
5) symmetric bi-edge diagonal matrix
对称双边对角矩阵
1.
The properties and gemeralized linverses of a symmetric bi-edge diagonal matrix;
对称双边对角矩阵的性质及广义逆
6) bordered matrix
加边矩阵
1.
In this article we study the relations among D1, D2, D3, D4, which are in the reflexive g-inverse matrixM-r=D1D2D3D4of the bordered matrixM=ABC0.
该文研究加边矩阵M =ABC 0的自反广义逆M-r =D1D2D3 D4中的子矩阵D1,D2 ,D3 和D4的关系 ,还研究了矩阵 A-r C-rB-r 0 和M-r 之间的关系。
2.
In this article we study the singularity of the bordered matrix M=ABC0 and give the structure of its reflxive g-inverses M-r=D1D2D3D40 by applying the multiple quotient singular value decomposition QQ-SVD.
作者运用多个矩阵的商型奇异值分解QQ -SVD ,研究加边矩阵M =ABC 0的奇异性 ,并给出它的自反广义逆M-r =D1 D2D3 D4的结构。
补充资料:对角矩阵
对角矩阵
diagonal matrix
对角矩阵[血,司比.七妞;八.arooa二‘ua,MaTp“职] 一个方阵,其中除主对角线上的元素可能不是零以外,其余元素都是零.0.A.”般H。股撰【补注】域K上的(陀xn)对角矩阵具有下列形式: ra.o……O、 10几·…认01 LO···……a,)其中a‘是K的元素.张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条