2) Probability estimation
概率估计
1.
In this approach, the methods of probability estimation and star model are used to evaluate the routing of nets.
这个方法用概率估计模型和星型模型来评价线网的走线 。
2.
The results showed that post probability estimation was significantly lower under low base-rate conditions than that under high base-rate conditions;RT was remarkably shorter under no-base-rate conditions than that under base-rate conditions.
结果表明,低基础概率组后验概率估计显著低,无基础概率组后验概率估计反应时显著短于有基础概率组。
3.
The results showed:(1) The probability estimation was significantly lower for passive events than active events when the events in the tasks were related to the subjects;it showed no significant difference between the two conditions when the events were not related to the subjects.
用贝叶斯推理问题为实验材料,探讨了主体关联性对贝叶斯推理概率估计的影响。
3) probability estimate
概率估计
1.
After studying each state respectively,we can get three kinds of the different probability estimate formulae.
本文对收益率序列存在相关性、收益率是多元随机变量情况下的尾概率估计问题也进行了分析。
4) probabilistic estimated value
概率估计值
1.
A new support vector machine based on sample probabilistic estimated value is presented in this paper.
提出一个新的基于样本点概率估计的支持向量机,通过定义相应样本数据点的概率估计值,以及相应的数据样本点到超平面的距离,来形成新的线性和非线性情况下的支持向量机。
5) inequality of the tail probability
尾概率估计
1.
The estimate inequality of the tail probability is very useful in the discussion of the character of a Wiener Process.
本文将给出了这类不等式的一个推广,并进一步扩充到了二维维纳过程的尾概率估计,期望可以进一步讨论关于Wiener过程的增量。
补充资料:Bayes估计量
Bayes估计量
Bayesian estimator
Bayes估计量【Bayesi助始廿ma.件;D自狱.。眨..界..] 用BayeS方法(Bayesian aPProach)由观察值对一未知参数所作的估计.统计问题使用这样的方法时,一般都假定未知参数所0 gR“是一具有给定先验分布7r=武do)的随机变量,决策空间D与集合0重合.且损失L(0,d)表示变量0与估计d的偏离.因此,函数L勿,d)通常假定为有形式L勿,d)=a(e)又(口一d),其中又是误差向量0一d的某个非负函数,若k二1,则常取又勿一d)={0一d}“(“>0).最有用且在数学上最方便的是平方损失函数L(口,d)=}‘一d1’.对这一损失函数,Bayes估计量(Ba卿决策函教(Bavesian dedsion function))占’二亡厂(x)定义为使最小总损失 !;‘p‘二·“,一,‘薯必,“一”‘·’2’〕口‘么,叮‘““,达到的函数,或与之等价,了是使最小条件损失 ,母‘E{[口一占(x)]2+“)达到的函数,由此推出,在平方损失函数的场合,B竹es估计量与后验均值占‘(x)=E勿{x)相等,而Bayesj双险(Bayes risk)为 。‘二,占‘)二E!D矿夕}x)]‘此处O(0}劝是后验分布的方差: o(口{x)二任{{口一E(0{x)12!,、}. 例设二=(x,,,二,戈),这里x,,,二,x。为具正态分布N勿,。’)的独立同分布变量,护己知,而未知参数0有正态分布N扭,铲).因为当x给定时口的后验分布为正态N(拜。,T:一、其中 n又。2一十“下一2 灿。二一—,,。一二n口‘一奋了一_ n口一汁~下且万=(x,十一+凡)/。,可知在平方损失函数{分一引’之下,Bayes估计量为占’(x)=线,而Bayes风险则为《二犷六伽铲十护).AH川畔即撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条