1) right YJ-pp ring
右YJ-pp环
1.
Moreover,we show that: Every left YJ-morphic ring is a right YJ-injective ring;Every right YJ-morphic Bear ring is a right YJ-pp ring;If R is a left YJ-morphic ring,then Soc(RR) Soc(RR) and J(R)=Z(RR).
说明了以下主要结果:每一个左YJ-morphic环是右YJ-内射环;每一个右YJ-morphic的Bear环是右YJ-pp环;若R是左YJ-morphic环,则J(R)=Z(RR),Soc(RR)Soc(RR)。
2) right YJ-injective ring
右YJ-内射环
1.
Moreover,we show that: Every left YJ-morphic ring is a right YJ-injective ring;Every right YJ-morphic Bear ring is a right YJ-pp ring;If R is a left YJ-morphic ring,then Soc(RR) Soc(RR) and J(R)=Z(RR).
说明了以下主要结果:每一个左YJ-morphic环是右YJ-内射环;每一个右YJ-morphic的Bear环是右YJ-pp环;若R是左YJ-morphic环,则J(R)=Z(RR),Soc(RR)Soc(RR)。
3) YJ-injective ring
YJ-内射环
4) left YJ-morphic ring
左YJ-morphic环
1.
Moreover,we show that: Every left YJ-morphic ring is a right YJ-injective ring;Every right YJ-morphic Bear ring is a right YJ-pp ring;If R is a left YJ-morphic ring,then Soc(RR) Soc(RR) and J(R)=Z(RR).
说明了以下主要结果:每一个左YJ-morphic环是右YJ-内射环;每一个右YJ-morphic的Bear环是右YJ-pp环;若R是左YJ-morphic环,则J(R)=Z(RR),Soc(RR)Soc(RR)。
5) PP ring
PP环
1.
that if R is α-rigid then R is PP ring if and only if R[x;α,δ] is PP ring.
CHANYong-hong等证明了:假如R是α-rigid环,那么R是PP环当且仅当R[x;α,δ]是PP环。
6) PP-ring
PP-环
1.
Ore extensions of weakly GPP-rings;
弱GPP-环的Ore扩张
2.
It is proved that the ring [[Rs,≤,λ]] is a reduced left PP-ring if and only if R is a reduced left PP-ring and every S-indexed subset C of B(R) has a least upper bound in B(R);R is a ring without nonzero zero-divisors,then the ring [[Rs,≤,λ]] is Dedeking finite if and only if R is Dedeking finite.
证明了[[Rs,≤,λ]]是reduced左PP-环当且仅当R是reduced左PP-环,且B(R)的每个S可标子集C在B(R)中有最小上界;若环R无非零零因子,则[[Rs,≤,λ]]是Dedekind有限环当且仅当R是Dedeking有限环。
3.
It is proved that if R is an σ-rigid ring and the addition group of R is a torsion-free group,then the ring of skew Hurwitz series over R is a PP-ring if and only if R is a PP-ring and any countable family of idempotents of R has a least upper bound in B(R),where B(R) is the set of all idempotents in R.
研究了斜Hurwitz级数环的PP性质,证明了当R是σ-刚性环,且R关于加法做成的群是挠自由群时,R上的斜Hurwitz级数环是PP-环当且仅当R是PP-环,且R的每个由幂等元组成的可数集在R的全体幂等元组成的集合B(R)中有上确界。
补充资料:留上李右相(一作奉赠李右相林甫)
【诗文】:
风俗登淳古,君臣挹大庭。深沉谋九德,密勿契千龄。
独立调元气,清心豁窅冥。本枝连帝系,长策冠生灵。
傅说明殷道,萧何律汉刑。钧衡持国柄,柱石总朝经。
隐轸江山藻,氛氲鼎鼐铭。兴中皆白雪,身外即丹青。
江海呼穷鸟,诗书问聚萤。吹嘘成羽翼,提握动芳馨。
倚伏悲还笑,栖迟醉复醒。恩荣初就列,含育忝宵形。
有窃丘山惠,无时枕席宁。壮心瞻落景,生事感浮萍。
莫以才难用,终期善易听。未为门下客,徒谢少微星。
【注释】:
【出处】:
全唐诗:卷214_50
风俗登淳古,君臣挹大庭。深沉谋九德,密勿契千龄。
独立调元气,清心豁窅冥。本枝连帝系,长策冠生灵。
傅说明殷道,萧何律汉刑。钧衡持国柄,柱石总朝经。
隐轸江山藻,氛氲鼎鼐铭。兴中皆白雪,身外即丹青。
江海呼穷鸟,诗书问聚萤。吹嘘成羽翼,提握动芳馨。
倚伏悲还笑,栖迟醉复醒。恩荣初就列,含育忝宵形。
有窃丘山惠,无时枕席宁。壮心瞻落景,生事感浮萍。
莫以才难用,终期善易听。未为门下客,徒谢少微星。
【注释】:
【出处】:
全唐诗:卷214_50
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条