1) set-valued fuzzy measure
集值模糊测度
1.
By the concept of convergence with respect to the fuzzy order of set sequences in m dimensional positive Euclid space,the weak autocontinuity of set-valued mapping is defined,and weak autocontinuity and uniform autocontinuity for the set-valued fuzzy measure are discussed,and the relationships between them are studied.
在m维正欧式空间的子集类上利用模糊序结构建立了序收敛的情况下,定义了集值模糊测度的弱自连续,讨论了它与集值模糊测度一致自连续的关系,得到了一些有趣的结果。
2) Fuzzy-Valued Fuzzy Measure
模糊值模糊测度
1.
Fuzzy-Valued Choquet Integrals(Ⅱ)——The Choquet Integral of Functions with Respect to Fuzzy-Valued Fuzzy Measures;
Fuzzy-Val模糊值Choquet积分(Ⅱ)——函数关于模糊值模糊测度的Choquet积分(英文)
3) Fuzzy-Valued Measure
模糊值测度
1.
Fubini Theorem of Fuzzy-Valued Integral of Fuzzy-Valued Functions with Respect to Fuzzy-Valued Measure;
建立卡氏积空间 (X×Y,S× T)上的乘积区间值测度和乘积模糊值测度 ,证明模糊值测度空间上模糊值函数的模糊值积分的 Fubini定理。
4) Measure of intuitionistic fuzzy sets
直觉模糊集测度
5) fuzzy number-valued measure
模糊数值测度
1.
In this paper a fuzzy number-valued measure is defined on H.
作为应用之一,在合理定义了广义矢值测度后,得到了约当分解定理,并且这种广义矢值测度就是一个模糊数值测度。
6) Product of Fuzzy-Valued Measure
乘积模糊值测度
补充资料:测度μ的支集
测度μ的支集
support of a measure
测度召的支集[劝“犯rt ofameasure召;。oc“Te月‘Me-P。,不之】 集合S(召)=G\G.)(拼),其中G是局部紧Hau-sdroff空间,拼是此空问上给定的正则BOrel测度,G。(召)是使拜(Gt,)=0的最大开集.换句话说,S(拜)是拜被支撑的最小闭集.(这里,如果拜(G\E)二O,那么召支于E.)若S(拜)是紧集,则称#是具有紧支集(eompacts叩Port)的. M.H.Bo认uexoBeKH盛撰【补注】对拓扑空间G上的测度召,当所有#零开子集的并集仍为零测集时,是可以定义召的支集的.在G有可数基,或拜是胎紧的或“是Radon测度(见正则测度(regular measure))时正是这种情形.但若G仅为局部紧以及群不是胎紧的,则就不总是如此了. 当然,对于带拓扑T的拓扑空间G上的测度拜,总是可以定义 S(尸)一G\日{V:V〔T且#(V)=0},但此时不一定有“(G\S(召))二O,而有违于支集的直觉.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条