1) Pairwise Open L-sets
配开L-集
2) γ-open L-sets
γ-开L-集
1.
In L-topological spaces,γ-open L-sets were introduced and the definition of γ-compactness was presented by inequality,where L was a complete DeMorgan algebra.
在L-拓扑空间中引入了γ-开L-集,并利用它们的不等式给出了γ-紧性的定义,这里L是完备的DeMorgan代数。
3) β-open L-set
β-开L-集
1.
A new form of β-closedness is presented in L-topological spaces by means of β-open L-sets and their inequality, where L is a complete DeMorgan algebra.
在L-拓扑空间中借助于β-开L-集合和它们的不等式给出了β-闭性的一种新形式,这里L是完备的DeMorgan代数。
4) δ-open L-sets
δ-开L-集
1.
A notion called δ-compactness is presented in L-topological spaces by means of δ-open L-sets and their inequality, where L is a complete De Morgan algebra.
在L-拓扑空间中借助于δ-开L-集和它们的不等式给出了δ-紧性的定义,这里L是完备的De Morgan代数。
5) open set wheel
L-开集轮
1.
In this paper,the characteristic properties of set wheel and open set wheel are investigated under the condition that the lattice membership degree is only a complete lattice.
在隶属度值格仅为完备格的条件下,研究了L-集轮和L-开集轮的特征性质,并以2种集轮为工具给出基于L-集轮和L-开集轮的L-集表现定理。
6) θ-open L-set
θ-开L-集
1.
A notion of θ-closedness is presented in L-topological spaces by means of θ-open L-sets and their inequality,where L is a complete DeMorgan algebra.
在L-拓扑空间中借助于θ-开L-集和它们的不等式给出了θ-闭性的定义,这里L是完备的DeMorgan代数。
补充资料:开集
开集
open set
开集【雌..就;。了盆p‘noe姗。欲cT加],拓扑空间中的 该空间的拓扑(见拓扑结构(拓扑)(t俄力吻灿1sto义t理re(tQI扣10gy)))的一个元素.更明确地说,设拓扑空间(X,动的拓扑;定义为集X的子集系T,使得l)X任:,必‘T;2)如果o,。:,i二l,2,则0,自0:“;;3)如果o二任T,:〔级,则U{0:::“吸}e:.于是,空间(X,:)中的开集(openset)就是拓扑:的元素,并且只是这些元素. E .A.nacb几王K.撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条