1) nonconvex feasible fields
非凸可行域
2) Nonfeasible Sub-area
非可行子域
3) nonconvex set
非凸区域
1.
In this paper we construct a new interior-point homotopy method for solving fixed-point problem in nonconvex set,and prove the convergence under the weak normal cone condition(see Definition 2.
本文构造了一个新的求解非凸区域上不动点问题的内点同伦算法,并在弱法锥(见定义2。
4) convex feasibility problem
凸可行问题
1.
Gradient projection algorithm for solving the convex feasibility problem
凸可行问题的一种次梯度投影算法
2.
Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modevn physical sciences,algorithms for solving convex feasibility problems continue toreceive great attention.
凸可行问题(CFP)是传统数学及现代自然科学中的一类重要问题,其应用日益广泛。
5) feasible region
可行域
1.
Study on rectangle feasible region for disposing concave vertex;
凹点法求解矩形可行域问题研究
2.
Study of power flow feasible region by electric circuit analysis method
用电路分析法研究电力系统潮流可行域
3.
A location method aiming at suppressing NLOS errors in cellular networks using single observer is proposed,which is named by pseudo-target dynamic feasible region constraint method.
针对非视距环境下多站定位方法需要资源量大、成本高且定位精度受非视距传播影响大等问题,本文提出了单站定位的伪目标动态可行域约束法。
6) feasible domain
可行域
1.
Study of the syndrome differentiation relationship between the feasible domain and every solution in linear programming theory;
论线性规划理论中各种解与可行域之间的辨证关系
2.
In the light of the principle that the optimum solution of a structure must occur at the boundary of feasible domain, limiting search scope in the restrain curved surface, with the result that the original restrain extreme value problem could be transformed non-restrain one, we can solve the problem using more simple non-restrain optimum method,this method does be boundary search one.
边界搜索法是根据结构优化最优解必定出现在可行域边界上的原理,将搜索范围限定在约束曲面上,使原来的约束极值问题转化为无约束极值问题,因而可用比较简单的无约束优化方法来求解。
3.
Furthermore, the feasible domain in topology optimization of trusses was analyzed.
基于以上定义,本文研究了桁架结构拓扑优化设计的可行域,证明了对于截面尺寸下限为零,且无尺寸上限的桁架结构受应力约束的拓扑优化设计问题,其设计空间不同拓扑的可行子域总是连通的,同时也给出了对于具有尺寸下限约束、具有局部稳定性约束的桁架结构拓扑优化设计的可行子域不连通的实例。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条