说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 迭代优化算法
1)  the iterative optimumalgorithm
迭代优化算法
2)  optimization iteration method
优化迭代算法
1.
By using the model,an optimization iteration method to determine the equilibrium state is proposed,which can simulate the variation of the mechanic and geometric state of the structures during the hoisting process accurately and effectively for arbitrary hoisting schemes.
根据钢结构吊装体系的受力特性,建立其平衡状态确定的一种力学模型,通过虚加构件的方法来消除体系的刚体位移,以各吊索段内力相等为优化目标,进而构造了其平衡状态确定的优化迭代算法。
3)  iterative methods for optimization
迭代最优化算法
4)  ICM optimization algorithm
迭代条件模式优化算法
5)  Iterative particle swarm optimization method
迭代粒子群优化算法
6)  iterative heuristic optimization
启发式迭代优化算法
1.
In this paper,we proposed two unsupervised frameworks for clustering multi-instance objects based on Expectation Maximization(EM) approach and iterative heuristic optimization respectively.
分别在基于EM算法和启发式迭代优化算法的框架下,提出了6种非监督的多例聚类算法,并对web图像进行聚类以分析用户的搜索兴趣。
2.
However,two unsupervised frameworks for clustering multi-instance objects based on expectation maximization(EM) approach and iterative heuristic optimization are proposed respectively.
针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用户的搜索兴趣。
补充资料:迭代算法


迭代算法
iteration algorithm

  迭代算法〔i恤腼吨函d朋;HTep叫“ouH‘~p“仪] 由点到集合的一个映射序列A*所确定的递推算法,其中A*:V一V,V是一个拓扑空间,对于某初始点““任v,可依下式计算点列。“任V, 。“+,一注*。“,儿=o,l,·…(l)称算子(1)为迭代(i把mt沁n),而序列{。“}为迭代序列(itemti祀s叫uence). 迭代法(jtemtionn犯thod)(或迭代逼近法(me-thod of iterati记appro汕na石on”应用于求下面算子方程的解 通。”f,(2)即某泛函的极小值,求方程Au=又“的本征值和本征向量等,同时也用来证明这些问题解的存在性.如果对于一个初始近似。。,当k一的时:‘~。,则称迭代方法(l)收敛到问题的解u. 求解(2)的线性度量空间V上的算子A*一般由下式构造 注*况几=。七一H*(A。友一f),(3)其中{H*二V~V}是由某迭代型方法所确定的算子序列.压缩映射原理(c ontraCting .n分pp吨pnn-ciPle)及真摧户,’或著向题的泛函变分极小化方法都是建立在构造形如(l),(3)的迭代法基础之上.所使用的构造A七的各种方法有Newton法(Newton脸thod)或下降法(d留cent,n祀th(记of)的诸多变形.人们尝试选取H*使得在一定条件下。止~u的快速收敛得到保证,这些条件要求计算机存储空间确定后算子A*u六的数值实现充分简单,有尽可能低的复杂性而且数值稳定.求解线性问题的迭代法得到了很好的发展和深人的研究.该迭代法这里分为线性与非线性两大类.Ga.法(Ga璐nr目兀心),Sd翻法(Sei-delrr℃th司),逐次超松弛法(见松弛法(侧公爪沁n1优thod))和带有tle氏皿eB参数的迭代法属于线性方法;变分法(如最速下降法,共扼梯度法和极小偏差法(mi曲nal discrepancyn坦thod))等.见最速下降法(s吹p巴t把ceni,皿thi对of);共扼梯度法(eonju,te脚dients,此山记of)属于非线性方法.最有效的迭代法之一是使用tIe玩IIDeB参数(Che勿shevP~t-ers),这里A是一个带有〔。,M』上谱的自相伴算子,M>m>0.这个方法提供了关于预先指定的第n步收敛性最优(对谱边界上的给定信息)估计.方法可描述为 “‘+’=“一“*十1(通。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条