1) control approximation model
近似控制模型
3) approximate model
近似模型
1.
Based on approximate models and genetic arithmetic,a scheme for the plane with multi-flaps was proposed to implement the multidisciplinary design optimization(MDO) of full-envelope flight control law and control effectors geometry & their placement.
基于近似模型和遗传算法,针对多操纵面布局飞机提出一种对全包线飞行控制律和操纵效率器几何形状与位置进行多学科优化的设计方法。
2.
In this approach, uniform design method was employed to generate the geometric information of samples, whose performances are calculated by CFD technique; the relationship between the geometric information and its performances of samples is mapped by the approximate model constructed by parallel artificial networks (PANN); genetic algorithms is employed to find .
均匀设计方法用来生成试验样本点几何信息,各样本点性能评估分析则借助CFD技术来完成,样本点几何信息与其性能之间的关系则采用并行神经网络所映射的近似模型来给出,最后由遗传算法来对该近似模型进行全局寻优,并将其优化得到的相应结果加入样本点集中,重复最后两步,直到满足设定的终止准则。
3.
In the light of the huge amount of time-consuming CFD (computational fluid dynamics) calculations during the numerical optimization of a turbo-machinery unit,developed was an optimized design method based on an approximate model.
针对叶轮机械数值优化过程中常常需要大量耗时的CFD计算,发展了一种基于近似模型的优化设计方法。
4) approximation model
近似模型
1.
To reduce huge computation of the traditional stochastic optimization methods for engineering optimization,approximation model methods with acceptable accuracy for engineering design are developed based on the statistical theory.
针对在工程中完全采用随机类优化方法寻优时计算量过大的问题,应用统计学的方法发展了计算量小、在一定程度上可以保证设计准确性的近似模型方法。
2.
Based on the original algorithm, the Kriging model is employed as an approximation model for Bayesian analysis.
介绍了克里金模型的基本理论,并采用以克里金模型为近似模型的贝叶斯分析算法,对函数关系复杂、难以计算情况下的全局优化问题进行求解。
3.
The paper presents an algorithm combining square response surface and Radial Basis Function Neural Network(RBFNN) to solve the problem that RBFNN is often difficult to meet the precision request of approximation model.
用径向基神经网络方法构造近似模型常常难以满足精度要求,提出了一种把二次响应面与径向基神经网络相结合的算法。
5) Approximately PID controller
近似PID控制
6) Kriging approximation model
Kriging近似模型
补充资料:比例控制模型
比例控制模型
【比例控制模型1根据历史数据求出经济增长与货币 供给之间的比例系数,确定货币的增长幅度,从而确定一定时期的货币供给量。 经济发展与货币增长量之间的比例系数是指社 会总产值每增加百分之一,需要货币供给量增加百分之几。设以△M代表货币供给增长率,△G代表社会总产值增长率;K代表经济增长与货币供给增长的比例系数。则货币供给增长率△M是经济增长率△G与经济增长和货币供给量增长的比例系数K的乘数。即: △M二K·△G
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条