1) simplified first-order second-moment m ethod
简化一次二阶矩法
2) FOSM
一次二阶矩法
1.
Fuzzy reliability analysis based on the FOSM method;
模糊可靠性分析一次二阶矩法
2.
Based on First-order Second-moment Method(FOSM),a formula for calculating t.
在一次二阶矩法的基础上,推导了计算模糊随机可靠度的具体公式。
3.
Reliability analysis using First Order Second Moment(FOSM)is important for structural probability design,in which process demands the derivative operation.
一次二阶矩法是目前求解结构可靠性分析的主要计算方法之一,该方法要求功能函数对随机变量的偏导运算。
3) First order second moment method
一次二阶矩法
1.
Using the JC method and the first order second moment method, the crack exceedance probability of aircraft wheel hubs under various cycle index number of cycles is calculat.
该模型以结构初始疲劳质量的描述为基础,考虑裂纹扩展的随机性,建立了以裂纹长度为判据的结构失效功能函数,并用JC法和一次二阶矩法计算飞机机轮轮毂在不同循环次数下的裂纹超过数概率。
4) first-order second-moment method
一次二阶矩法
1.
The first-order second-moment method is employed to calculate the reliability of girders,and to evaluate whether the carrying capacity is safe or not.
运用一次二阶矩法计算主梁关键截面可靠度指标,评价主梁承载能力是否基于安全期内。
2.
Based on the foregoing work, the parameters of soil are considered as random variables and by using of the first-order second-moment method and Monte Carlo method, the calculating method of static earth pressure by reliability theory is presented.
在此基础上,将土体参数看作随机变量,分别采用一次二阶矩法与蒙特卡罗法,给出了基于可靠度的静止土压力计算方法,对在工程设计中合理确定静止土压力有一定帮助。
5) first order second moment
一次二阶矩法
1.
Based on the limit state equation and the first order second moment(FOSM)method,the process of solving the Psfs at the target reliability is simulated.
为了完善含缺陷结构的评定规范,介绍了BS7910和API579使用的分安全系数及其由来,并通过构造极限状态方程,利用一次二阶矩法模拟了求解目标可靠度水平下分安全系数的过程,并以实例说明采用该方法求出的分安全系数是合理的。
2.
The result obtained has been compared with the one obtained by first order second moment (FOSM) method expanded about mean value.
为此 ,用基于验算点处展开泰勒级数的哈桑———林德法计算了轴心压杆稳定可靠性的可靠性指标 ,并同均值一次二阶矩法作了比较 。
6) the method of simple and two ranks quadrature
一次二阶矩方法
1.
The analysis of the example indicates that the results by the method of simple and two ranks quadrature ar.
以中心点法和验算点法为代表的一次二阶矩方法计算简便,但对非线性程度较高的结构功能函数,其计算结果与精确度相差过大。
补充资料:计划简化法
计划简化法
planning by simplification
计tIJ简化法(planning by simp一ifieation)将问题抽取成简单的形式,在解决了这些简单形式的问题后,再用其答案去指导解决原初的、更复杂的问题。例如,有以下五个等式,要求求出x与Y的函数关系: R一22 X=R+3ZM=3L+6 Y=M+l R一3乙 为了解决这一问题,可以把这些等式表达为各变量间的连接形式,即R一Z,X一R,M一L,Y一材,R一。这样,很容易发现X与Y的连接通路是:X--R一L一M一Y,因而导致问题的迅速解决。 (谭立海撰粤瑞赞审)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条