1) δ-open L-sets
δ-开L-集
1.
A notion called δ-compactness is presented in L-topological spaces by means of δ-open L-sets and their inequality, where L is a complete De Morgan algebra.
在L-拓扑空间中借助于δ-开L-集和它们的不等式给出了δ-紧性的定义,这里L是完备的De Morgan代数。
2) δ-open sets
δ-开集
1.
It is that the all δ-open sets are open sets,all open sets are α-open sets,α-open sets are semi-open sets and preopen sets,semi-open sets or preopen sets are β-open sets.
在一般拓扑空间中讨论了抽象集合的概念,研究了其性质,得出如下结论,即:所有的δ-开集都是开集,所有开集又都是α-开集,α-开集是半开集且预开集,半开集或预开集是β-开集,反之则不成立。
3) δ-open(closed)sets
δ-开(闭)集
4) γ-open L-sets
γ-开L-集
1.
In L-topological spaces,γ-open L-sets were introduced and the definition of γ-compactness was presented by inequality,where L was a complete DeMorgan algebra.
在L-拓扑空间中引入了γ-开L-集,并利用它们的不等式给出了γ-紧性的定义,这里L是完备的DeMorgan代数。
5) β-open L-set
β-开L-集
1.
A new form of β-closedness is presented in L-topological spaces by means of β-open L-sets and their inequality, where L is a complete DeMorgan algebra.
在L-拓扑空间中借助于β-开L-集合和它们的不等式给出了β-闭性的一种新形式,这里L是完备的DeMorgan代数。
6) Pairwise Open L-sets
配开L-集
补充资料:开集
开集
open set
开集【雌..就;。了盆p‘noe姗。欲cT加],拓扑空间中的 该空间的拓扑(见拓扑结构(拓扑)(t俄力吻灿1sto义t理re(tQI扣10gy)))的一个元素.更明确地说,设拓扑空间(X,动的拓扑;定义为集X的子集系T,使得l)X任:,必‘T;2)如果o,。:,i二l,2,则0,自0:“;;3)如果o二任T,:〔级,则U{0:::“吸}e:.于是,空间(X,:)中的开集(openset)就是拓扑:的元素,并且只是这些元素. E .A.nacb几王K.撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条