1) IBIEM
间接边界积分方程法
1.
The scattering of cylindrical waves by a cavity in half-space is investigated by using an indirect boundary integral equation method(IBIEM).
采用一种间接边界积分方程法求解了柱面波在半空间中洞室周围的散射问题。
2) Indirect boundary integral equation
间接边界积分方程
1.
By adopting time-dependent fundamental solution,indirect boundary integral equation and its equivalent Galerkin variational formula which based on simple layer potential is conducted for the equation.
对二维热传导方程的Dirichlet初边值问题,采用带时间变量的基本解,利用基于单层位势的间接边界积分方程及其等价的Galerkin变分形式求解,该方法涉及到与时空相关的四重奇异积分的计算。
3) IBIEs
间接变量边界积分方程
4) boundary integral equation method
边界积分方程法
1.
Using boundary integral equation method, the authors calculate the results of symmetric four pole sounding and Wenner array sounding for an equiaxial 3 D body in homogeneous half space, and proves that the results are correct by comparing the results with calculating results of relevant analytic equation.
以均匀半空间中等轴状三维地质体为例 ,利用边界积分方程法对对称四极和温纳尔 2种装置的电测深进行数值计算 ,并与相应解析表达式的计算结果进行对比 ;用数值模拟方法研究了均匀半空间中板状体的对称四极、温纳尔等装置电测深拟断面图“看得见但看不穿”的规律 。
2.
On the hasis of appropriate Green functions,boundary integral equation method is used to analyze the problem of water waves scattered by the floating body.
首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。
5) IBIE
间接变量边界积分方程(IBIE)
6) nonsingular IBIEs
无奇异间接变量边界积分方程
补充资料:边界积分法
边界积分法
method of boundary integration
边界积分法〔“比由闭ofh”n山卿加峡户血n;kO“lyP肋roH.TerpHPOB纽“,Me功八」,围道积分法(1拙thod of eon-tour integtation) 复变函数几何理论的重要方法,用这种方法能得到描述单叶和多叶函数极值性质的各种不等式,以及保形映射理论中区域映射函数(基本区域函数)间的等式.方法主要利用函数性质把已知区域保形地映射到各典型区域.利用这类映射人们可能构造具有下述边寻件辱(加助山叼Property)的区域函数:在区域的每个边界分支上,函数值与另一个这种函数的复共辘值相差一个加性常数.边界积分法基本上包括下面的内容: 所研究的积分是取在已知区域的整个边界上(边界一般取为有限段简单闭解析曲线).选取这个积分使其被积函数为包含具有上述边界性质的因子,而且在应用这个性质之后,积分值可用留数定理得到(见围道积分法(contourin唤尹石on,能山记of),Ca吐hy积分定理(C暇hy integtal此~)).另一方面,假如原来的积分值或其符号已经知道,则作为结果人们可以得出所用函数之间的一些关系或联系着它们的若干不等式.通常能够使用上述方法的边界积分是作为根据非负二重积分O欢刀公式所作变换的一个结果,即在给定区域上正则的某函数的导数模平方的积分.这样一来就把边界积分法与面积法(山岌In℃th-记)联系起来了.使用边界积分法,可得下面有关结果:多连通区域间单叶保形映射的畸变定理(曲toltjon山印J℃11‘)(见【11,【21);单叶函数系数的充要条件(见【3」);有关保形映射理论中基本区域函数的若干恒等式(见f41). 在研究单叶函数时边界积分法还采用下面形式.假设,例如B是w平面内边界C由有限简单闭解析曲线组成的区域;假设S(w)是在除去B的有限个点以外的整个w平面内调和的函数;又设p(w)为具有下面性质的函数:差S(w)一p(w)在区域B内调和,闭区域上连续,且P(w)}c=O,则 )“器“£‘0,这里刁/口n表示B的外法向微分.若。(w)和q(w)为解析函数,S=Re6,尸=Reg,则上面不等式可以写成如下形式 Re}卞)‘。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条