1) periodic time series
周期时间序列
1.
A new model,MPARMA,which is extended by periodic autoregressive moving-average model with the finite mixture modeling,is proposed for modeling the skeness and multimodal in periodic time series.
为了描述周期时间序列中的偏倚和多峰现象,结合有限混合模型方法,将周期自回归滑动平均(Periodical Autoregression Moving Average——PARMA)模型推广,提出混合周期自回归滑动平均时间序列(MPARMA)模型,并讨论了MPARMA序列的一阶和二阶平稳性条件。
2) periodically correlated time series
周期相关时间序列
1.
The stationarity and the periodicity of periodic autoregressive model are discussed,and it s necessary and sufficient conditions for periodically correlated time series are developed.
介绍了周期相关时间序列和周期自回归模型,并研究了周期自回归时间序列的稳定性及周期性,得到了它为周期相关时间序列的一个充要条件,推广了文献[1]的结论。
3) Dynamic Time Series Period analysis and prediction
动态时间序列周期分析预测
4) Fourier transform of nonperiodic discrete-time sequences
离散时间非周期序列的傅里叶变换
5) unstable periodic part time series
不稳定周期部分时间序列
6) futures time series
期货时间序列
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条