1) the atmospheric boundary layer thickness
大气边界层厚度
1.
In order to apply CFD technology in numerical simulation of a wind farm,and estimate wind power distribution in detail,the article analyses the effecting of the landform gradient,roughness and the atmospheric boundary layer thickness.
为使CFD技术更广泛地应用于风电场地形绕流的数值模拟,并为风电场出力预报提供详细的风功率密度分布,本文针对圆形陡坡地形,在分析了地形坡度、地面粗糙度以及大气边界层厚度对此地形风场速度分布影响的基础上,任意选择一个位置并以先前计算的速度分布为条件,计算整个域中的风场数据并与先前的计算值进行比较,以探讨直接采用风电场中测风塔的有限数据,进行风电场大气流动CFD模拟的可行性。
3) boundary layer thickness
边界层厚度
1.
The analysis result of velocity distribution and boundary layer thickness is put forward in the boundary layer and cored region for laminar and turbulent flow of pipeline.
采用动量积分方法推出了管道流动中的速度边界层方程,给出了管道层流和紊流时速度边界层和核心区中的速度分布、边界层厚度的解析结果,并与冯。
2.
At the same time, the speed distribution function )(hf is constructed, the iteration equation of boundary layer thickness )(xd is required and the momentumintegral equations of boundary layer are solved.
强调构造边界层内速度分布函数并设法得到边界层厚度的迭代式式对求解边界层动量积分方程的重要性。
5) atmospheric boundary layer
大气边界层
1.
Wind engineering and atmospheric boundary layer wind tunnel;
风工程学与大气边界层风洞
2.
Discussion on the simulation of atmospheric boundary layer with spires and roughness elements in wind tunnels;
关于风洞中用尖劈和粗糙元模拟大气边界层的讨论
3.
Study on the characteristics of atmospheric boundary layer by Mie scattering lidar over Chengdu;
Mie散射激光雷达研究成都地区大气边界层结构
6) boundary layer
大气边界层
1.
A high-accuracy rotational Raman lidar system has been designed for daytime temperature profiling of atmospheric boundary layer.
设计了一个转动拉曼激光雷达系统,对大气边界层温度进行全天候高精度测量。
补充资料:大气边界层物理
研究在大气边界层中所发生的物理现象的学科,是大气物理学的一个分支。大气边界层中气象要素分布有如下特点:①近地面层的气温、水汽含量和风速的铅直梯度特别大;②风速随高度变化有其特殊规律(见大气近地面层,埃克曼螺线)。边界层的大气,既要受气压梯度力、科里奥利力和湍流粘性力的作用(见大气中的作用力),又要受地面的摩擦作用和由辐射引起的温度分布不均匀性的影响,运动非常复杂,具有涡旋和可压缩流体的湍流特征,故大气边界层物理是建立在大气湍流理论基础上的。
研究内容 大气边界层物理的主要内容包括:大气边界层中的湍流特征;边界层中各物理量(如动量、热量、水汽等)的湍流输送,气溶胶、二氧化硫、二氧化碳等的湍流扩散(见大气湍流扩散、空气污染气象学);大气边界层内风、温度、湿度等气象要素的铅直分布及随时间的变化规律,大气边界层的辐射传输,以及蒸发、霜、露诸天气现象等问题。
探测仪器 大气边界层物理需要一些非常规的气象仪器来进行探测,如气象塔上安装的能测量温度、风速等大气特性的仪器,能对这些气象要素的脉动(频率约每秒几周至每分几周)快速响应的仪器和直接测量边界层通量的仪器等。在遥感仪器中,声雷达(见声波大气遥感)和调频连续波雷达都是探测边界层的有力工具。
研究意义 地面的摩擦作用,使大气边界层成为大尺度运动动能的汇(见大气角动量平衡)。地面的物理量,如动量、热量、水汽含量等,向自由大气的输送,都要通过边界层,从这种意义上讲,大气边界层又是向大气输送物理量的源。因此关于大气边界层的物理知识,对大尺度天气过程的演变、长期预报和气候理论等问题的研究,都是很重要的。
大气边界层物理的发展,还与国民经济和国防建设的发展密切相关。例如:高建筑物(如高楼、桥梁、高塔等)的风负荷(见建筑气象学);波在湍流大气中的传播;对于原子、化学、细菌战争的防护,导弹、火箭运行的气象保障,新式兵器现场使用的气象条件的研究(见军事气象学);随着工业发展而出现的大气污染,大气公害问题的研究;农作物生长的气象条件的研究(见农业气象学)等;都与大气边界层物理的研究有关。
研究内容 大气边界层物理的主要内容包括:大气边界层中的湍流特征;边界层中各物理量(如动量、热量、水汽等)的湍流输送,气溶胶、二氧化硫、二氧化碳等的湍流扩散(见大气湍流扩散、空气污染气象学);大气边界层内风、温度、湿度等气象要素的铅直分布及随时间的变化规律,大气边界层的辐射传输,以及蒸发、霜、露诸天气现象等问题。
探测仪器 大气边界层物理需要一些非常规的气象仪器来进行探测,如气象塔上安装的能测量温度、风速等大气特性的仪器,能对这些气象要素的脉动(频率约每秒几周至每分几周)快速响应的仪器和直接测量边界层通量的仪器等。在遥感仪器中,声雷达(见声波大气遥感)和调频连续波雷达都是探测边界层的有力工具。
研究意义 地面的摩擦作用,使大气边界层成为大尺度运动动能的汇(见大气角动量平衡)。地面的物理量,如动量、热量、水汽含量等,向自由大气的输送,都要通过边界层,从这种意义上讲,大气边界层又是向大气输送物理量的源。因此关于大气边界层的物理知识,对大尺度天气过程的演变、长期预报和气候理论等问题的研究,都是很重要的。
大气边界层物理的发展,还与国民经济和国防建设的发展密切相关。例如:高建筑物(如高楼、桥梁、高塔等)的风负荷(见建筑气象学);波在湍流大气中的传播;对于原子、化学、细菌战争的防护,导弹、火箭运行的气象保障,新式兵器现场使用的气象条件的研究(见军事气象学);随着工业发展而出现的大气污染,大气公害问题的研究;农作物生长的气象条件的研究(见农业气象学)等;都与大气边界层物理的研究有关。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条