说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> J-反次正交矩阵
1)  J-Anti-sub-orthogonal Matrix
J-反次正交矩阵
2)  J-quasi-sub-orthogonal Matrix
J-拟次正交矩阵
1.
The J-quasi-sub-orthogonal Matrix and their Special Case;
J-拟次正交矩阵及其特例
3)  J-sub-orthogonal Matrix
J-次正交矩阵
1.
J-sub-orthogonal matrix and its properties
J-次正交矩阵及其性质
4)  J-Anti-sub-Unitary Matrix
J-反次酉矩阵
5)  sub-orthogonal matrix
次正交矩阵
1.
J-sub-orthogonal matrix and its properties
J-次正交矩阵及其性质
2.
In addition,we studied the relation between symmetric matrix and sub-involutory matrix,and the relation between symmetric matrix and sub-orthogonal matrix,which have been proved theoretically.
研究了次对称矩阵的性质,次对称矩阵与次对合矩阵,次正交矩阵的关系,并加以理论证明,得到了一些重要的结论。
3.
Some main properties of sub-characteristic value of general real matrix are given,and sub-characteristic value of(anti) asymmetric matrix,(anti) sub-symmetric matrix,sub-orthogonal matrix,involutary matrix and idempotent matrix is studied.
给出了一般实方阵次特征值的一些主要性质,并对(反)对称阵、(反)次对称阵、次正交矩阵,以及对合矩阵与幂等矩阵的次特征值的取值情况进行了研究,得到了一些新结果。
6)  J-sub-Unitary Matrix
J-次酉矩阵
补充资料:正交矩阵


正交矩阵
orthogonal matrix

正交矩阵【份血剧间叮.廿改;opT0r0I.幼1.11四M盯-四从a」 具有单位元l的交换环R上的一个矩阵(Inatrix),其转里矩阵(trans衅ed皿呱)与逆矩阵相同正交矩阵的行列式等于士IR上的所有n阶正交矩阵的集合构成一般线性群(gene阁如c盯grouP)GL。(R)的一个子群.对任何实正交矩阵a,存在一个实正交矩阵c,使得eae一’一d认g【土l,一,士l,a,,一’,arj,其中 }!。05 0 sin。}! a=11一J’J 11。 {{一sm毋,cos毋2 11一个非退化复矩阵a相似于一个复正交矩阵,当且仅当其初等因子(eleITrntary di访sors)系具有下列胜质: 1)对又笋士1,初等因子(x一又)爪和(x一厂‘)“重复相同的次数; 2)每个形如(x土l)2,的初等因子都重复偶数次.【补注】由正交矩阵A关于标准基以x)=Ax(x〔R”)定义的映射盯R”~R”,保持标准内积不变,因此定义了一个正交映射(ortllogonaln‘pp吨).更一般地,若V和W是具有内积<,),,,(,)甲的内积空间,则使得<:(x),二(y)),=(另,y>。的线性映射眠V~W称为正交映射. 任何非奇异(复或实)矩阵M允许一个极分解(polar deeomposition)M=SQ“Q:S:,其中S和S;对称,Q和Q:正交.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条