1) coefficient of risk aversion
风险规避系数
1.
The model described the impact of various factors in the procurement,and introduced the coefficient of risk aversion.
该模型描述了影响采购总成本的各个因素,并引入了风险规避系数,将供应商的供应风险定量化、成本化。
2) Constant Relative Risk Aversion Coeffic
常数相对风险规避系数
3) the Coefficient of Relative Risk Aversion
相对风险规避系数
4) risk avoidance
风险规避
1.
Study on risk avoidance in software project bidding based on life cycle management;
基于全寿命周期的软件项目投标风险规避研究
2.
IT outsourcing risk avoidance in vendor dominant context;
服务商主导的IT外包风险规避
3.
Cost earnings,risk avoidance and human capital investment;
成本收益、风险规避与人力资本投资
5) risk elusion
风险规避
1.
Neural Network Model for the RMB/USD Exchange Rate Forecast and the Risk Elusion;
基于神经网络的人民币/美元汇率预测与风险规避
6) Risk aversion
风险规避
1.
Risk aversion and evaluation of science research projects in military hospital;
军队医院基金项目的申报评估与风险规避
2.
Supply chain coordination with risk aversion retailers;
带有风险规避型销售商的供需链协调
3.
Evolution of day-to-day route choice behavior considering risk aversion and perception updating;
考虑风险规避和认知更新的日常择路行为演进
补充资料:发电系统风险特性系数
发电系统风险特性系数
generation system risk characteristic factor
tod一anx一tong fengx一an tex一ngx一shu发电系统风险特性系数(generation systemrisk eharacteristic faetor)用来近似表示发电系统风险度与强迫停运容t(或系统备用容t)的函数关系的参数,通常用m表示,单位是兆瓦(MW)。m是美国通用电气公司(General Eleetrie Com哪ny,GE)L.L.加弗(L.L.Garver)于20世纪60年代中期提出的一个可使系统可非性计算简化的系数(见发电机组有效载待客全)。 根据容t棋型(见发电系统模型)中的数据,将早积概率作为强迫停运容t的函数绘在半对数坐标纸上,可得到一条曲线(见图)。此曲线比较接近直线,可通过a、b两点的一条直线来拟合.取直线上的一段已b’为斜边作三角形,日的坐标为(X、.山),夕的坐标为(X,.击),便三角形两个顶点的纵坐标恰好相差。倍,即图中山/山二e,则此三角形底边对应的横坐标为为一为且等于所示系统风险特性系数。的值。因此,。值的大小反映了系统风险度对停运容t(或备用容t)变化的饭感程度。┌─┬─┬───┬───┬──┬──┬──┬─┐│\ │成│蔚荆 │肠曲自│. │ │ │ │├─┼─┼───┼───┼──┼──┼──┼─┤│口│口│飞 │门 │门 │口 │口 │曰│├─┴─┴───┼───┼──┼──┼──┼─┤│茄叔多 │岌 │丫} │{’ │ │ ││ }.} │ │ │ │ │ │├─┬─┬─┬─┴───┴──┼──┼──┼─┤│ │ │{ │,a,,1.’今 │天 │,扩│ ││ │ │ │ .一X‘,一力│ │认 │ │├─┼─┼─┼─┬───┬──┼──┼──┼─┤│口│口│口│口│口 │口 │口 │四 │口│├─┼─┼─┼─┼───┼──┼──┼──┼─┤│口│口│口│日│ │日 │日 │口 │因│└─┴─┴─┴─┴───┴──┴──┴──┴─┘吸迫停运容t .MW风险特性系数m的图示。的值可直接用算式求得.根据,的定义,图中拟合直线的纵坐标可表示为 A:=尸(x)=Be一荟(1)式中X为强迫停运容t,A二、P(X)为对应停运容tX的早积概率,B为常数与图中所选a、b两点的位t有关。 图中a、b二点的横坐标已给定为X。和X。,则对应的纵坐标可求得为凡和人,由式(1)可写出A。Be一会不一蕊二百-毕(2)将式(2)两边取对数后并加整理即求得二的表达式为 兀一Xa祝二-气声,r,二L3) In}生1 一L人J 应用式(3)计算,时,在形成系统的容t棋型后,必须预先给定人和凡的值。给定的原则是使它们包括的累积概率变化范围满足计算的擂要,因此,与系统风险度判据有关。例如,当系统年风险度判据取为。.ld/a时,取人今。.1和人、。.0003~。.。。04已可满足用260个工作日(美国及西欧)或312个工作日(亚洲和非洲一些国家)计算年风险度的需要。如风险度判据为其他值,可仿此调整图中a、b两点位t。凡、人一经确定,再由容量棋型查出对应的X。和X,,即可由式(3)求得m的值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条