1) Morphological spectrum entropy
形态谱熵
2) spectrum entropy
谱熵
1.
Voice activity detection algorithm with low signal-to-noise ratios based on the spectrum entropy;
低信噪比下基于谱熵的语音端点检测算法
2.
Experiments have proved that 1-dimensional and 2-dimensional spectrum entropy indexes are practical in characteristics abstraction of defect, and at the same time, their limitations are pointed out.
为了研究谱熵分析方法在漏磁无损检测中的应用,将信息熵理论引入缺陷漏磁信号的特征提取工作中,通过试验分析证明一维谱熵、二维谱熵在缺陷类别辨识中的可行性,并指出其存在的局限性。
3.
Energy-spectrum entropy and subharmonic-harmonic rate methods were used to analyze speech based on speech sinusoidal model.
基于语音正弦模型,采用能量谱熵和子谐波谐波比率方法进行语音分析。
3) spectral entropy
谱熵
1.
Application of voice detection to vehicle communication based on spectral entropy;
语音信号的谱熵检测在车辆通信中的应用
2.
To measure the brain activity variations under different depth of anesthesia(DOA),and investigate whose influence on electroencephalogram(EEG) of the SD rat,the KC complexity(C(n)) and the spectral entropy(H) were introduced to analyze EEG and four components under different DOA.
为了研究大鼠在不同麻醉深度下大脑活动的变化,探测麻醉深度对其脑电信号(EEG)的影响,采用KC复杂度和谱熵对不同麻醉深度下的EEG及其4个主要频段信号进行了复杂性分析。
3.
Two complexity measures, approximate entropy (ApEn) and spectral entropy (SE) were introduced and investigated on heart rate (HR) sequences recorded from healthy young adults by Peng C K with specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques.
本文介绍了近似熵 (ApEn)和谱熵 (SE)两种复杂性测度 ,研究了在两组静默 (采用中国气功和Kundalini瑜珈练习方法 )和正常状态下的心率复杂性 。
4) entropy spectrum
熵谱
1.
This paper makes the comprehensive evaluation of the quality of pile foundation through time domain,frequency domain and entropy spectrum,in which spectrum analysis is a new method.
通过时域、频域、熵谱对桩基质量进行综合评价,熵谱是一种新的谱分析方法,并通过实例分析,说明了在评价桩基质量时熵谱的优点。
5) spectrum form
谱图形态
6) pattern spectrum
形态谱
1.
Faulty grounding line selection based on pattern spectrum in power distribution system
基于数学形态谱的配电网接地选线新方法
2.
The pattern spectrums of partial discharge signals after noise reduction are extracted by multi-scale open operation.
采用多尺度数学形态学开运算提取消噪后的局部放电信号数学形态谱,通过形态谱的提取可看出每种放电类型具有不同的形态特征,为放电类型的识别打下基础。
3.
Fault features based on pattern spectrum were presented for analyzing tiny changes of energy and waveform of generator sets vibration and reflecting the trend of early faults.
为了分析发电机组振动信号在能量和波形方面的细小变化,从而反映发电机组的早期故障趋势,提出了基于数学形态谱的故障特征量。
补充资料:极大熵谱估计
估计平稳随机过程功率谱密度的方法,这种方法在外推时能使自相关函数在未知点的取值具有最大统计自由度。J.P.伯格于1967年首先提出这种方法并把它称为极大熵谱估计。极大熵谱估计最初应用于地球物理学领域地震记录数据的分析,后来在雷达、声纳、图像处理、语言分析以及生物医学等领域都有广泛的应用。
在统计学中,熵是对各种随机试验不确定程度的一种度量。概率分布的熵越大、试验的可能结果越不确定。伯格的思想是要在外推相关函数的每一步,都既能保证相关函数的已知部分不变,又能在新增加外推值之后使概率分布具有最大的熵;也就是在每步外推时不对未知点处自相关函数取值施加任何限制(即其取值具有最大统计自由度,不对它强加任何条件)。极大熵谱估计的这种特点能克服传统的功率谱估计方法分辨率不高的弱点。在理论上,过程的功率谱是自相关函数的傅里叶变换。传统的功率谱估计方法是将样本自相关函数乘以某种窗函数(即对自相关函数加权),然后再作傅里叶变换。窗函数可以增加谱估计的稳定性并减少谱的泄漏,但窗函数会限制谱的分辨力。传统方法存在的问题实际上是由于它把没有观测到的数据(或其自相关函数)都看作为零,同时对已知部分的信息加以人为修改(加权)而引起的。而极大熵谱估计对已知的最大迟延以外的自相关函数进行合理的外推,因而能提高所求功率谱的分辨力,特别是在已知数据量较少时,其效果比传统方法更优。
假设一个平稳正态过程自相关函数的前N+1个迟延点的值r(0),r(1),...,r(N)已确知,需要求r(N+1)的值。以r(0),r(1),...,r(N+1)作为相关函数,则对应的N+2维正态分布的熵为
其中R(N+1)为相关阵:
因此使熵为最大就相当于使行列式 det[R(N+1)]为最大。可以使det[R(N+1)]对r(N+1)的偏导数为零,求出r(N+1)。将得到的r(N+1)代入R(N+2),同理可根据使det[R(N+2)]为最大的条件求出r(N+2)。再把求到的r(N+1)和r(N+2)代入R(N+3)中的相应元素,对det[R(N+3)]求极大可得到r(N+3),依此类推。
与这种方法得到的自相关函数所对应的功率谱为
式中i=刧,Δt是x(t)的采样间隔,ω为频率,M+1为递推次数,而A屌(a0,...,aM)T中各元素可由R(M)A=(1,0,...,0)T 求得,T表示转置。
实际计算时,由于只掌握x(t)的有限记录而无法得知自相关函数的精确值,因此只能用它的估计值替代。伯格在求取r和A(参数向量)的估值方面还提出一种递推算法,它可以避免矩阵求逆,充分利用数据所提供的信息,而且递推过程每步所对应的行列式detR都是非负定的。后来又有其他学者提出新的算法,克服伯格算法中的缺点(如所谓谱线分裂和谱峰漂移),但算法的变化并不改变极大熵的原则。
在统计学中,熵是对各种随机试验不确定程度的一种度量。概率分布的熵越大、试验的可能结果越不确定。伯格的思想是要在外推相关函数的每一步,都既能保证相关函数的已知部分不变,又能在新增加外推值之后使概率分布具有最大的熵;也就是在每步外推时不对未知点处自相关函数取值施加任何限制(即其取值具有最大统计自由度,不对它强加任何条件)。极大熵谱估计的这种特点能克服传统的功率谱估计方法分辨率不高的弱点。在理论上,过程的功率谱是自相关函数的傅里叶变换。传统的功率谱估计方法是将样本自相关函数乘以某种窗函数(即对自相关函数加权),然后再作傅里叶变换。窗函数可以增加谱估计的稳定性并减少谱的泄漏,但窗函数会限制谱的分辨力。传统方法存在的问题实际上是由于它把没有观测到的数据(或其自相关函数)都看作为零,同时对已知部分的信息加以人为修改(加权)而引起的。而极大熵谱估计对已知的最大迟延以外的自相关函数进行合理的外推,因而能提高所求功率谱的分辨力,特别是在已知数据量较少时,其效果比传统方法更优。
假设一个平稳正态过程自相关函数的前N+1个迟延点的值r(0),r(1),...,r(N)已确知,需要求r(N+1)的值。以r(0),r(1),...,r(N+1)作为相关函数,则对应的N+2维正态分布的熵为
其中R(N+1)为相关阵:
因此使熵为最大就相当于使行列式 det[R(N+1)]为最大。可以使det[R(N+1)]对r(N+1)的偏导数为零,求出r(N+1)。将得到的r(N+1)代入R(N+2),同理可根据使det[R(N+2)]为最大的条件求出r(N+2)。再把求到的r(N+1)和r(N+2)代入R(N+3)中的相应元素,对det[R(N+3)]求极大可得到r(N+3),依此类推。
与这种方法得到的自相关函数所对应的功率谱为
式中i=刧,Δt是x(t)的采样间隔,ω为频率,M+1为递推次数,而A屌(a0,...,aM)T中各元素可由R(M)A=(1,0,...,0)T 求得,T表示转置。
实际计算时,由于只掌握x(t)的有限记录而无法得知自相关函数的精确值,因此只能用它的估计值替代。伯格在求取r和A(参数向量)的估值方面还提出一种递推算法,它可以避免矩阵求逆,充分利用数据所提供的信息,而且递推过程每步所对应的行列式detR都是非负定的。后来又有其他学者提出新的算法,克服伯格算法中的缺点(如所谓谱线分裂和谱峰漂移),但算法的变化并不改变极大熵的原则。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条