1) state-symbol sequence decoding
状态-符号序列译码
2) symbolic series coding
符号序列编码
3) sequential decoding
序列译码
1.
And then using Fano algorisms,it implements the softdecision sequential decoding of systematic convolutional code and analyzes the properties,which play a good foundation for the future engineering application.
主要研究卫星通信协议IESS 309协议中的系统卷积码的编码及其序列译码的计算机模拟。
2.
A new sequential decoding method based on Genetic algorithm is proposed.
本文提出了一种基于遗传算法的纠错序列译码算法 ,将遗传算法具有的全局优化的迭代进化用于序列译码中 ,使得译码序列不仅保留最大似然路径 ,也扩展一些似然度比较小的路径 ,使被选中的路径具备多样性 ,可以搜索比较宽的范围 ,从而尽可能跟踪到最佳路径 。
4) symbolic sequence
符号序列
1.
Analysis of bifurcation and chaos in a class of piecewise smooth systems based on symbolic sequence;
基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析
2.
Research of Finite and Infinite Symbolic Sequences;
有限和无限符号序列的研究
3.
In order to reasonably measure the difference between symbolic sequences in [0,1], this paper presents the concepts of normalized identical distance and normalized edit distance.
为了在[0,1]区间上合理度量符号序列之间的区别,提出了归一化等同距离和归一化编辑距离的概念,并通过数学分析证明了它们满足度量的3条基本公理,从理论上说明了它们的合理性。
5) symbolic series
符号序列
1.
The ideas of binary partition, symbolic series bar chart, Shannon entropy, Euclid number and high rank square are introduced based on the symbolic time series analysis method.
介绍了符号序列分析中的二进制划分、直方图、Shannon熵、欧几里得范数、高阶矩等概念,在两种试验汽油机处于热怠速工况时,运用上述概念对HC排放信号进行分析和评价。
6) symbol sequence
符号序列
1.
The rule of symbol sequence on the super-attracted point was found when the multiplier periodic buds was on the principal axis by using of lots of experiments.
研究了复映射 f(z,c) =z-2 +c所产生的广义M集 ,利用周期分类法绘制了广义M集的分形图 ,分析了M集周期芽苞及倍周期芽苞在主轴上同分岔图的对应关系·从分岔图入手 ,通过大量计算机数学试验 ,发现了主轴上倍周期芽苞在超吸引点处符号序列的排列规律 ,给出了构造任意倍周期芽苞字提升方程的一个算法·利用二分法解字提升方程 ,得到主轴上各倍周期芽苞的超吸引点 ,发现M集倍周期芽苞在主轴上存在一个普适常数δ ,并在非主轴上进行了验证·深刻揭示了分形的自相似本质 ,为进一步研究分形的精细结构提供了有力的帮
2.
The symbol sequence is used to recognize the large-scale characteristics of the cha-otic oscillator output in time-domain.
针对Duffing振子系统在信号检测领域中的应用,提出了一种基于符号序列信息熵混沌特性的微弱信号检测方法。
补充资料:应力状态和应变状态
构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条