1) copy evaluation
拷贝赋值运算符
1.
The copy structure function and the copy evaluation operator security loophole analyzes;
拷贝构造函数和拷贝赋值运算符安全漏洞分析
2) equal operator function overload
赋值运算符重载函数
4) assignment operator
指派(赋值)运算子;赋值操作符
6) numeric operator
数值运算符
补充资料:赋值
实数(或复数)绝对值在任意域上的推广。赋值这个概念最初是由J.屈尔沙克于1913年提出的。设 φ是定义在任意域F上的一个取非负实数值的函数,并满足以下三个条件:①φ(α)=0,当且仅当α=0,并对某个α∈F 有φ(α)≠1;②φ(αb)=φ(α)φ(b);③φ(α+b)≤φ(α)+φ(b),J.屈尔沙克把这样的φ称为F上的一个赋值。按照通行的叫法,后改称之为F的绝对值。不久以后,A.奥斯特罗夫斯基引进了另一种绝对值φ,它满足上述的①和②,以及④,并把这种φ称为非阿基米德绝对值,而把满足①、②、③而不满足④的那些φ称为阿基米德绝对值。实数域R或复数域C的通常绝对值就是它们的阿基米德绝对值。有绝对值φ的域F,记作(F,φ)。
完全域 借助于F的绝对值φ,可以把分析学上的一些概念移植于F。设{αi}是F的一个序列。若对于每个实数ε>0,总有一个自然数n0,使得当m,n≥n0时,恒有φ(αm-αn)<ε,则称{αi}是(F,φ)的一个φ柯西序列。若对于序列{αi},有α∈F,使得当n≥n0时恒有 φ(αn-α)<ε则称{αi}是φ收敛的,而α称为它的φ极限。若(F,φ)中每个φ柯西序列都是φ收敛的,则称F关于φ是完全的,或者说(F,φ)是完全域(complete field)。实数域R或复数域C关于通常的绝对值是完全的,而K.亨泽尔的P进数域Qp则是一个非阿基米德绝对值的完全域。对这两种域作统一的处理,正是发展赋值理论的一个主要出发点。F上所有形如的级数,称为F上关于文字X的形式幂级数。按照通常的加、乘运算,它们组成一个域,称为F上的形式幂级数域,记作 F((x))。令,以及ρ(0)=0,于是得到一个完全域(F((X)),φ)。
当φ是阿基米德绝对值时,有著名的奥斯特洛夫斯基定理:若F关于阿基米德绝对值φ是完全的,则F连续同构于R 或C。
赋值和赋值环 非阿基米德绝对值这个概念还可以作如下的推广。设 Г是一个有序交换群,其运算为乘法,单位元素为1。设0是一个符号,它与Г的元素r,满足r·0=0·r=0·0=0,以及0。若φ: F →Г∪{0}是个满映射,满足:①φ(α)=0当且仅当α=0;②φ(αb)=φ(α)·φ(b);③,则称φ是F的一个赋值.或者说F是有赋值φ的赋值域,记作(F,φ)。Г称为φ的值群。当Г是正实数乘法群时,φ就是前面所说的非阿基米德绝对值。在赋值域(F,φ)中,子集成一个环,称为φ 的赋值环。F的子环 A成为某个赋值的赋值环,当且仅当对于F的每个元素α,必有α∈A或者α_1∈A。
从域F的一个子环A 到某个域K 的一个同态映射B,如果满足:①对于α∈F-A,有α_1∈A以及α_1B=0;②B把A的单位元素映射到K的单位元素,那么B称为F的一个位。域的每个位,显然给出一个赋值环;反之,从域的赋值环也不难作出域的一个位。因此,赋值、赋值环和位这三个概念密切相关。位还是代数几何中的一个重要概念,早在R.戴德金和H.韦伯的经典著作中就有了它的雏型。赋值自W.克鲁尔于20世纪30年代初提出以后,赋值理论广泛应用于代数数论、类域论以及代数几何等方面;到了60年代,它又与泛函分析有着日益增长的关联。
赋值的阶 设Г是赋值φ的值群,Δ是Г的一个子群。若对于Δ的每个元素δ,Г中所有满足δ-1<у<δ的元素у也属于Δ,则Δ称为Г的一个孤立子群。{1}和Г都可以作为Г的孤立子群。以下设Г≠{1}。由于Г是有序的,Г中所有的孤立子群按包含关系成一个全序的集。除Г 本身外的所有孤立子群,按包含关系所成全序集的序型定义为Г的阶。若φ的值群Г的阶是m,就称φ是m阶赋值。因此,所谓一阶赋值,就是指值群只有{1}为其真孤立子群的赋值。有序交换群的阶为1,当且仅当它保序同构于某个由实数所成的乘法群。这个事实表明,一阶赋值正是前面所定义的非阿基米德绝对值。
离散赋值 当一阶赋值φ的值群为无限循环群时,则φ称为离散赋值。例如,关于有理数域Q。设 p是一个素数,那么每个有理数α≠0都可惟一地写成的形式,其中b、с是与p互素的整数,v(α∈Z。规定,以及φ(0)=0。不难验知,φ满足赋值的条件,而且是一个离散赋值,称之为Q的p进赋值。
赋值的开拓 设(F,φ)是一个赋值域,K是F的一个扩域,若K有一个赋值ψ,使得对每个α∈F,都有ψ(α)=φ(α),则ψ称为φ在K上的开拓。关于赋值开拓有存在性定理:F的赋值在F的任何一个扩域上都至少有一个开拓。
拓扑域 如果域F有一个拓扑τ,使得F的四则运算关于τ是连续的,那么F称为关于τ的拓扑域,记作(F,τ)。库尔雪克意义下的赋值域,是拓扑域的最早例子。
赋值理论也可以从拓扑代数的角度来研究,是基于下述事实。对于有绝对值φ 的域 F,所有形如{α∈F|φ(α)<ε}的子集构成零元素的一个基本邻域族,从而生成F的一个域拓扑。在φ是F的赋值时,情形也相同。对拓扑域作系统的研究始于20世纪30年代初期D.von 丹齐克的工作。
局部紧域 任何拓扑域(F,τ)只能是连通的,或者完全不连通的。如果τ是F的一个局部紧拓扑,那么(F,τ)称为局部紧域。离散拓扑也是一种局部紧拓扑。仅就非平凡的和非离散的情形而论,局部紧域有一些显著的性质。首先,每个局部紧域 (F,τ)都有一个绝对值φ,使得由φ所生成的拓扑与τ相同。其次,还有定理:设(F,τ)是一个局部紧域。如果它是连通的,那么它连续同构于R或C(关于通常绝对值的拓扑);如果它是完全不连通的,那么它就连续同构于 p进数域Qp的一个有限扩域,或者某个有限域K上的形式幂级数域 K((x))的有限扩域。
参考书目
O.Zariski and P.Samuel,Commutative Algebra,Vol.2,Springer-Verlag,New York,1960.
O. Endler,valuation Theory,Springer-Verlag, Berlin,1972.
完全域 借助于F的绝对值φ,可以把分析学上的一些概念移植于F。设{αi}是F的一个序列。若对于每个实数ε>0,总有一个自然数n0,使得当m,n≥n0时,恒有φ(αm-αn)<ε,则称{αi}是(F,φ)的一个φ柯西序列。若对于序列{αi},有α∈F,使得当n≥n0时恒有 φ(αn-α)<ε则称{αi}是φ收敛的,而α称为它的φ极限。若(F,φ)中每个φ柯西序列都是φ收敛的,则称F关于φ是完全的,或者说(F,φ)是完全域(complete field)。实数域R或复数域C关于通常的绝对值是完全的,而K.亨泽尔的P进数域Qp则是一个非阿基米德绝对值的完全域。对这两种域作统一的处理,正是发展赋值理论的一个主要出发点。F上所有形如的级数,称为F上关于文字X的形式幂级数。按照通常的加、乘运算,它们组成一个域,称为F上的形式幂级数域,记作 F((x))。令,以及ρ(0)=0,于是得到一个完全域(F((X)),φ)。
当φ是阿基米德绝对值时,有著名的奥斯特洛夫斯基定理:若F关于阿基米德绝对值φ是完全的,则F连续同构于R 或C。
赋值和赋值环 非阿基米德绝对值这个概念还可以作如下的推广。设 Г是一个有序交换群,其运算为乘法,单位元素为1。设0是一个符号,它与Г的元素r,满足r·0=0·r=0·0=0,以及0
从域F的一个子环A 到某个域K 的一个同态映射B,如果满足:①对于α∈F-A,有α_1∈A以及α_1B=0;②B把A的单位元素映射到K的单位元素,那么B称为F的一个位。域的每个位,显然给出一个赋值环;反之,从域的赋值环也不难作出域的一个位。因此,赋值、赋值环和位这三个概念密切相关。位还是代数几何中的一个重要概念,早在R.戴德金和H.韦伯的经典著作中就有了它的雏型。赋值自W.克鲁尔于20世纪30年代初提出以后,赋值理论广泛应用于代数数论、类域论以及代数几何等方面;到了60年代,它又与泛函分析有着日益增长的关联。
赋值的阶 设Г是赋值φ的值群,Δ是Г的一个子群。若对于Δ的每个元素δ,Г中所有满足δ-1<у<δ的元素у也属于Δ,则Δ称为Г的一个孤立子群。{1}和Г都可以作为Г的孤立子群。以下设Г≠{1}。由于Г是有序的,Г中所有的孤立子群按包含关系成一个全序的集。除Г 本身外的所有孤立子群,按包含关系所成全序集的序型定义为Г的阶。若φ的值群Г的阶是m,就称φ是m阶赋值。因此,所谓一阶赋值,就是指值群只有{1}为其真孤立子群的赋值。有序交换群的阶为1,当且仅当它保序同构于某个由实数所成的乘法群。这个事实表明,一阶赋值正是前面所定义的非阿基米德绝对值。
离散赋值 当一阶赋值φ的值群为无限循环群时,则φ称为离散赋值。例如,关于有理数域Q。设 p是一个素数,那么每个有理数α≠0都可惟一地写成的形式,其中b、с是与p互素的整数,v(α∈Z。规定,以及φ(0)=0。不难验知,φ满足赋值的条件,而且是一个离散赋值,称之为Q的p进赋值。
赋值的开拓 设(F,φ)是一个赋值域,K是F的一个扩域,若K有一个赋值ψ,使得对每个α∈F,都有ψ(α)=φ(α),则ψ称为φ在K上的开拓。关于赋值开拓有存在性定理:F的赋值在F的任何一个扩域上都至少有一个开拓。
拓扑域 如果域F有一个拓扑τ,使得F的四则运算关于τ是连续的,那么F称为关于τ的拓扑域,记作(F,τ)。库尔雪克意义下的赋值域,是拓扑域的最早例子。
赋值理论也可以从拓扑代数的角度来研究,是基于下述事实。对于有绝对值φ 的域 F,所有形如{α∈F|φ(α)<ε}的子集构成零元素的一个基本邻域族,从而生成F的一个域拓扑。在φ是F的赋值时,情形也相同。对拓扑域作系统的研究始于20世纪30年代初期D.von 丹齐克的工作。
局部紧域 任何拓扑域(F,τ)只能是连通的,或者完全不连通的。如果τ是F的一个局部紧拓扑,那么(F,τ)称为局部紧域。离散拓扑也是一种局部紧拓扑。仅就非平凡的和非离散的情形而论,局部紧域有一些显著的性质。首先,每个局部紧域 (F,τ)都有一个绝对值φ,使得由φ所生成的拓扑与τ相同。其次,还有定理:设(F,τ)是一个局部紧域。如果它是连通的,那么它连续同构于R或C(关于通常绝对值的拓扑);如果它是完全不连通的,那么它就连续同构于 p进数域Qp的一个有限扩域,或者某个有限域K上的形式幂级数域 K((x))的有限扩域。
参考书目
O.Zariski and P.Samuel,Commutative Algebra,Vol.2,Springer-Verlag,New York,1960.
O. Endler,valuation Theory,Springer-Verlag, Berlin,1972.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条