1) extrema representation
极值表示
2) Wavelet transform extreme representation
小波变换极值表示
3) multiscale maxima representation
多尺度极大值表示
1.
Then using the multiscale maxima representation based on the wavelet transform, we proposed for fingerprint images a non linear filtering method which was constrained by several kinds of knowledge in the scale space.
给出了基于小波变换的多尺度边缘表示方法及其对一般的图像信号表示的完备性和相应重建算法的稳定性,然后在小波变换的多尺度极大值表示方法的基础上,提出在尺度空间中基于多种知识的指纹图像非线性滤波方法。
4) limiting representation
极限表示
1.
In this paper,we use the algebraic structures of A, W and W-weighted Drazin inverse to present the {1}-in-verse representation and the limiting representation of the W-weighted Drazin inverse for the rectangular matrix.
利用带W权Drazin逆的代数结构,将方阵的Drazin逆的{1}-逆表示与极限表示推广到长方阵的情况,得到长 方阵带W权Drazin逆的{1}-逆表示与极限表示。
5) minimal presentation
极小表示
1.
The minimal presentations of this kind of numerical semigroups are completely determined.
本文完全确定了该类数字半群的极小表示。
6) table indicated value
表所示值
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条