说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 混沌白噪声
1)  chaotic white noise
混沌白噪声
2)  chaotic noise
混沌噪声
1.
If taking the reverberation as chaotic noise,the detection.
将混响视为混沌噪声并进行混沌建模,利用Volterra滤波器实现混响时间序列预测,实现混响背景噪声下信号的检测,并通过仿真得到预期结果。
2.
This paper presents a neural network based parameter estimation method to solve the problem of parameter estimation of useful signals in chaotic noise.
文中介绍了相空间重建技术和神经网络的原理,对于神经网络预测模型,给出了所提算法的原理和步骤,针对具体应用问题,用计算机仿真实验验证了该算法提取混沌噪声中信号参数的有效性,给出了实验结果和必要的分析。
3.
Detection of signal in chaotic noise is discussed in this paper.
介绍了所提算法的原理和步骤 ,针对具体应用问题 ,用计算机仿真和实测数据试验验证了所提算法检测混沌噪声中弱小的暂态信号的有效
3)  Decaying chaotic noise
衰减混沌噪声
4)  chaotic noise annealing
混沌噪声退火
1.
By introducing chaotic noise annealing process into conventional Hopfield network,this paper proposes a new chaotic annealing neural network (CANN) for global optimization of continuous constrained non linear programming.
通过对普通 Hopfield优化网络引入混沌噪声退火过程 ,提出了一种用于约束非线性全局优化的混沌退火神经网络 ,它易于实现 ,原理简明 ,应用广泛 。
5)  chaos noise generator
混沌噪声发生器
6)  chaotic noise background
混沌噪声背景
补充资料:白噪声


白噪声
white noise

  白噪声[咖te俪se;6e几u曲川yM] 有常值谱密度(sPeet阁de招ity)的广义平稳随机过程(stationa理stochasticP联ess)X(t).白噪声的广义相关函数形如刀(r)二。’占(t),其中叮’是正常数而占(t)是吞函数.白噪声过程被广泛应用于描述有很小相关周期的随机扰动(例如“热噪声”—导体中由电子的热运动产生的电流强度的脉动).在白噪声的谱分解 x(。)一丁。!、!d:(、)中,其“基本振动”e“‘d:(又)在所有频率又处都有同样的平均强度;更确切些说,它们的平均平方振幅是 Eld:(洲2一兰以一二<伙二. 2兀这个谱分解意味着,对每一平方可积函数甲(t), 一J,(:)X(。)d:一丁石(、)d·(、),其中石(劝是毋(t)的R脚让r变换(Fourie:tr二-form);广义过程X二(x,毋>对函数职(t)的更明显的依赖性可以由一个与d以劝同类型的对应随机测度d叮(t)来描述(d叮(t)是随机测度dz(又)的Fou-rier变换),即 ‘X,,,一了,(。)d。(亡)· G泣仍s白噪声(Gauss恤认七ite noise)X(t)作为肠旧翎.运动(Bro~订幻石。n)叮(t)的广义导数(X(t)=叮‘(t)),是构造“受控”于一随机微分方程的随机扩散过程(diffusionp联ess)y(t)的基础: Y,(t)=a(t,Y(t))+。(t,Y(t))粉‘(t)·这方程常常写成微分形式: dy(t)=a(r,Y(r))dr+。(r,Y(t))d叮(t). 涉及白噪声应用的另一类重要模型是描述有平稳随机扰动X(t)作用于其上的稳定振动系统行为的随机过程Y(t),这时,Y(s)(st).这种系统的一个很简单的例子是 _了d、,,、 PI‘竺一】Y(t飞=X(t)、 一\dt/一‘一’其中尸(:)是全部根都在左半平面的多项式;在阻尼掉“瞬时过程’之后,过程Y(t)即由下式给出: y“,一f击“·‘、,·实际应用中,在所谓散粒效应(shot effect)过程的描述中,如下形式的白噪声 x(。)二艺占(。一;*) k起着重要的作用(k在一的与的之间变动,而…,:一:,;〔,,:t,…构成一Poisson过程);更确切地说,X(t)是Poisson过程粉(t)的广义导数.散弹效应过程本身有如下形式: Y(:)一了。(。,:)x(、)、:一J。(。,:)、。(、) =艺c(:,Tk) k其中c(t,、)是满足条件 丁!。(:,:)}2、:、二的权函数;此外,广义过程X=的均值是 a‘,,一a丁,(「)d‘,其中a是Poisson律的参数(见上),而该过程的谱表示 X(:)一a+丁。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条