1) commutation/gate commutated thyristor
换流/门极换流晶闸管
2) gate commutated thyristor(GCT)
门极换流晶闸管
1.
The enduring voltage structure and features of Gate Commutated Thyristor(GCT) were analyzed briefly.
简述了门极换流晶闸管(GCT)的耐压结构及其特点。
3) gate commutated thyristor
门极换流晶闸管
1.
Analysis of the mechanism and characteristic for the transparent anode in a gate commutated thyristor;
门极换流晶闸管透明阳极的机理与特性分析
2.
The gate-cathode structures of gate commutated thyristor(GCT) and gate turn-off thyristors are analyzed.
在分析门极可关断晶闸管(GTO)和门极换流晶闸管(GCT)门-阴极结构的基础上,依据GCT关断时的换流机理,提出了一种新的GCT门-阴极图形的设计方法。
4) IGCT
集成门极换流晶闸管
1.
Application of IGCT in Coal Mine;
集成门极换流晶闸管IGCT在矿山中的应用
2.
Application of IGCT on Power System;
集成门极换流晶闸管在电力系统中的应用
3.
IGCT(Integrated Gate Commutated Thyristor) is widely used in mid-voltage field.
集成门极换流晶闸管(IGCT)在中压领域的应用越来越广泛。
5) integrated gate commutated thyristor
集成门极换流晶闸管
1.
In this paper we model Asymmetric Integrated Gate Commutated Thyristor by using PISCES-2ET software, and obtain the model graph, which include impurity concentration profile, concentration of electron and hole, and potential.
运用PISCES-2ET软件对非对称型集成门极换流晶闸管进行器件模拟,给出了器件的杂质浓度、电子和空穴浓度和电势的二维和三维分布;通过模拟结果来验证设计是否合理,对下一步设计器件的物理参数和结构参数起到指导作用。
6) reverse con ducting gate commutated thyristor
逆导型门极换流晶闸管
补充资料:传热学:两相流换热
两相流换热:
自然界中的物质有3种形态﹕固相﹑液相和气相。两相物质共存的流动称为两相流。两相流与管道壁面之间的传热过程称为两相流换热﹐它实际上也是一种对流换热。在工业生產中﹐有各种各样的两相流和两相流换热。例如﹐在化学工业中的流化床内的流动和换热﹐用管道输送粉状和粒状固相物质时的流动和换热﹐气-液(或汽-液)两相流换热等。其中汽-液两相流换热得到广泛而深入的研究﹐因为它是生產中广为使用的蒸汽锅炉﹑蒸汽冷凝设备和核反应堆中传热计算的重要基础知识。两相流换热已发展成为传热学的一个重要分支。
两相流换热与单相流换热的主要区别在於两相分界面的形状对流型和换热过程有重要影响﹐而相分界面的形状又随著含汽率﹑流速和管道放置的方位等条件的变化而改变。例如对於竖管的两相流传热就有4种流态(见图 竖管内两相流换热示意图 )。泡状流﹕当含汽率不大时﹐在连续液体中均匀分布著许多大小不同的小汽泡。块状流﹕当含汽率增高到某一数值时﹐许多小汽泡就汇集成为一个块状的大汽泡﹐其直径接近管道的内径。在大汽泡之间的液体中含有一些均布的小汽泡。环状液膜流﹕当含汽率增高到很高时﹐液相变成沿管壁流动的环状液膜﹐而汽相则居中流动﹐少量液相以细小雾状液珠悬浮在汽相中。雾状流﹕当管壁上的环状液膜被全部蒸发时﹐管内就充满著悬浮雾滴。
进行两相流换热计算时﹐必须根据不同的流型和含汽率的高低﹐引用相应的经验公式。常见的两相流换热有沸腾换热和凝结换热。
自然界中的物质有3种形态﹕固相﹑液相和气相。两相物质共存的流动称为两相流。两相流与管道壁面之间的传热过程称为两相流换热﹐它实际上也是一种对流换热。在工业生產中﹐有各种各样的两相流和两相流换热。例如﹐在化学工业中的流化床内的流动和换热﹐用管道输送粉状和粒状固相物质时的流动和换热﹐气-液(或汽-液)两相流换热等。其中汽-液两相流换热得到广泛而深入的研究﹐因为它是生產中广为使用的蒸汽锅炉﹑蒸汽冷凝设备和核反应堆中传热计算的重要基础知识。两相流换热已发展成为传热学的一个重要分支。
两相流换热与单相流换热的主要区别在於两相分界面的形状对流型和换热过程有重要影响﹐而相分界面的形状又随著含汽率﹑流速和管道放置的方位等条件的变化而改变。例如对於竖管的两相流传热就有4种流态(见图 竖管内两相流换热示意图 )。泡状流﹕当含汽率不大时﹐在连续液体中均匀分布著许多大小不同的小汽泡。块状流﹕当含汽率增高到某一数值时﹐许多小汽泡就汇集成为一个块状的大汽泡﹐其直径接近管道的内径。在大汽泡之间的液体中含有一些均布的小汽泡。环状液膜流﹕当含汽率增高到很高时﹐液相变成沿管壁流动的环状液膜﹐而汽相则居中流动﹐少量液相以细小雾状液珠悬浮在汽相中。雾状流﹕当管壁上的环状液膜被全部蒸发时﹐管内就充满著悬浮雾滴。
进行两相流换热计算时﹐必须根据不同的流型和含汽率的高低﹐引用相应的经验公式。常见的两相流换热有沸腾换热和凝结换热。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条