说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 窗口H∞范数
1)  window H∞norm
窗口H∞范数
1.
To investigate H∞ performance of continuous-time control systems in local frequency range,a new conception of window H∞ norm is presented based on traditional H∞norm,and it is stated that traditional H∞norm is a special case of window H∞norm.
为研究连续时间控制系统局部频段的H∞性能,基于传统H∞范数提出了窗口H∞范数的新概念,指出传统H∞范数是窗口H∞范数的特例。
2)  window H_∞norm
窗口H_∞范数
3)  normalized windowed
规范窗口
1.
Reconstruction formulas and range of the normalized windowed Fourier transformation;
规范窗口Fourier变换的反演公式及其值域刻画
4)  H∞ norm
H∞范数
1.
The H∞ norm of closed-loop transfer function was adopted to be the optimization index,a new method for the placement optimization of MR dampers suitable for spatial reticulated structure was proposed.
推导了基于阻尼器速度反馈的结构振动方程和状态控制方程,提出以控制系统闭环传递函数的H∞范数为位置寻优指标,提出基于结构动能和弹性能度量结构振动控制效果的指标。
2.
Through designing a state feedback controller,the closed-loop poles are placed within a specified disk,the H∞ norm of the closed-loop transfer function is strictly less than a given positive scalar,and the steady-state variance for each state of the closed-loop system is not more than the prescribed individual upper bound.
通过设计状态反馈控制器,使闭环系统的极点被配置在给定的圆盘中,闭环传递函数的H∞范数小于所给定的一个正标量;同时,闭环系统每个状态的稳态方差不高于各自给定的上界。
3.
Based on the relationship between the optimal H∞ norm and the fundamental eigenvalue of boundary value problem of the Hamiltonian differential equation as presented in part (Ⅰ), the optimal H∞, norm γopt can be obtained by the extended Wittrick-Williams algorithm after the discretization of the differential equation.
在文(Ⅰ)介绍的最优H∞范数与Hamiltonian微分方程边值问题一阶特征值之间等价关系的基础上,通过将微分方程离散化为差分方程,即可利用扩展的Wittrick-Williams方法计算最优H∞范数γopt。
5)  H∞ norm bound
H∞范数界
6)  H∞norm
H∞范数
1.
The H2and H∞norms and their applications in vibration control systems are discussed.
重点讨论了H2和H∞范数各自的特点及它们在振动控制中的物理含义及相关用途。
补充资料:Luxemburg范数


Luxemburg范数
Luxemburg nonn

L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条