1)  galvanic corrosion
原电池腐蚀
1.
Besides keeping the positive features of the conventional microetchants,this advanced copper microetchant possesses the following additional advantages: etched copper surface is brighter than that treated by conventional methods;etched copper surface does not tarnish even being exposed to air for ten minutes;no galvanic corrosion occurs in this micr.
采用过硫酸盐和几种特别添加剂配制成的微蚀剂,不仅具有传统微蚀剂的优点,而且拥有其独特的优点:微蚀处理的铜表面比传统微蚀剂处理的光亮;微蚀处理后暴露在空气中10 min,铜表面也不变色;微蚀处理后的元件没有原电池腐蚀现象发生;其工作溶液比传统微蚀剂稳定;微蚀速率容易控制以满足不同的微蚀要求;微蚀处理不影响精密线路板和元件的尺寸。
2)  primary cell
原电池
1.
Reduction of ferric iron in titanium sulfate solution by ion-exchange membrane primary cell method;
离子膜原电池法还原钛液中的三价铁
2.
Improving the experiment of primary cell experiment to meet the requirement of new course standard;
根据新课标要求改进原电池实验
3.
The electromigration of Cd in contaminated kaolin soil by an iron (Fe) and activated char (C) primary cell.
以铁屑和活性炭构建的原电池研究不同电极间距下高岭土中的镉在原电池电场下的电动力学迁移。
3)  reduction current
还原电流
4)  primary battery
原电池
1.
Conformance probability in the service output test of primary battery;
原电池放电时间符合的概率
2.
The factors of discharge equipment that affecting the veracity of primary battery discharge time were discussed.
讨论了放电设备中影响原电池放电时间准确性的因素,包括电压测试、负荷电阻、计时精度及温度误差等。
5)  galvanic cell
原电池
1.
The zirconia,carbon and molten slags containing FeO were used to constitute a galvanic cell.
采用氧离子导体氧化锆管与还原剂碳、含有电活性物质 FeO 的熔渣组成电化学体系,利用原电池短路方法从氧化物熔渣中电化学还原得到了无碳金属。
2.
The galvanic cell employed in this experiment was as follows: graphite |_(Fe+Csaturation)|ZrO_2(MgO)|(FeO)_((slag))+Cu_((l))|Mo.
提出了一种从氧化物熔渣中直接提取金属的电化学方法,即采用氧离子渗透膜原电池短路法,用碳作还原剂,在CaO SiO2 Al2O3 FeO熔渣中,利用阴极合金化原理,获得无碳铁合金。
3.
The preparation of active copper electrode and its application as anode in a KOH electrolyte based galvanic cell oxygen sensor were discussed.
使用活性铜电极作为阳极、以金电极为阴极、以KOH溶液为电解液,制备了原电池型氧气传感器,并对活性铜电极的制备进行了细致的考察。
6)  reduction potential
还原电势
参考词条
补充资料:原电池腐蚀
分子式:
CAS号:

性质:两种具有不同电位的金属相互接触并暴露在水环境中所产生的电化学腐蚀。又称电偶腐蚀或异金属接触腐蚀。由于它们构成微电池,结果电位较负的贱金属腐蚀加速,而电位较正的贵金属腐蚀速率减慢,因此,阳极金属被腐蚀,而阴极金属得到保护。例如,当铜和铁在水中相互接触时,铁为阳极,铜为阴极,由于金属损失发生在阳极,因此铁被腐蚀,而铜受到保护。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。