说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 显微/纳米硬度计量
1)  micro-/nano-indentation testing
显微/纳米硬度计量
2)  nanoindentation hardness
纳米显微硬度
1.
Comparison of the nanoindentation hardness of near grain boundary to that of inner grain showed that the nanoindentation hardness of near grain boundary was generally higher than that of inner grain.
通过测量四种材料晶粒内部和晶界附近的纳米显微硬度 ,总体来看 ,晶界附近的硬度通常比晶粒内部高 ;而这种差别越小 ,所对应材料的冲击性能越
2.
Comparison of the nanoindentation hardness of near grain boundary to that of inner grain showed that the nanoindentation hardness of near grain boundary was generally harder than that of inner grain.
通过测量4种材料晶粒内部和晶界附近的纳米显微硬度,统计地看,晶界附近的硬度通常比晶粒内部高。
3)  nanoindentation
纳米硬度计
1.
Mechanical properties of polysilicon microcantilever beams measured using nanoindentation;
纳米硬度计研究多晶硅微悬臂梁力学特性
2.
We measured its Young’s modulus by nanoindentation, analyzed the dynamic performance of the film and compared the difference of these two methods.
对它们的力学特性进行了分析,用纳米硬度计测量了薄膜的杨氏模量。
3.
The nanoindentation mechanical properties,adhesion and fracture toughness of coatings are studied,and the load penetration depth curve is examined.
阐述了利用纳米硬度计研究涂层纳米力学特性的纳米压痕方法以及涂层纳米力学特性、附着、断裂韧性的评定指标 ,分析了载荷P与压入深度h关系曲线和载荷P与压入深度平方h2 关系曲线的特征 ,并提出用P -h和P -h2 关系曲线完整描述涂层纳米力学特性的方法 P -h2 曲线与P -h曲线一道就可完整反映涂层界面失效、断裂失效的整个过程 应用该方法对化学气相沉积 (CVD)TiN/Ti(C ,N) /TiC/Ti(C ,N) /TiCTi(C ,N) /TiC七层耐磨硬涂层进行了研究 结果表明 ,其具有较高的硬度、韧性和耐磨
4)  microhardness tester
显微硬度计
1.
Aiming at the problems in using HXD-1000 digital microhardness tester,several factors for using it correctly were given.
针对使用HXD-1000型数字式显微硬度计时经常出现的问题,诠释了几点注意事项,包括试样准备、压头类型和有关参数的选择、工作台运动位置边界的指示、硬度值测定示意图、硬度值表示方法等。
5)  nano meter hardness measurement
纳米硬度测量
6)  metrological AFM of nanomeasuring system
计量型原子力显微镜纳米测量系统
1.
The AFM is one of important and useful nanomeasuring instruments,we have developed the metrological AFM of nanomeasuring system at NIM.
中国计量科学研究院成功研制了计量型原子力显微镜纳米测量系统,本文介绍了该系统的技术特点和指标,并通过与发达国家的比对测试验证了该系统在测量原理、测量精度及可溯源性方面已达到了国际先进水平。
补充资料:看纺织印染中应用纳米材料和纳米技术

纺织印染中应用纳米材料和纳米技术时,除了要解决纳米材料的制备技术之外,重要的是要解决好纳米材料的应用技术,其中关键问题是使纳米粒子和纺织印染材料的基本成分(即聚合物材料)之间处于适当的结合状态。印染中,纳米粒子在聚合物基体中的分散和纳米粒子在聚合物表面的结合是主要的应用技术问题。  


    制备聚合物/无机纳米复合材料的直接分散法,适用于各种形态的纳米粒子。印染中纳米粒子的使用一般采用直接分散法。但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚,利用常规的共混方法不能消除无机纳米粒子与聚合物基体之间的高界面能差。因此,要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过必要的化学预分散和物理机械分散打开纳米粒子团聚体,将其均匀分散到聚合物基体材料中并与基体材料有良好的亲和性。直接分散法可通过以下途径完成分散和复合过程:  


    高分子溶液(或乳液)共混:首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。有人将环氧树脂溶于丙酮后加入经偶联剂处理过的纳米TiO2,搅拌均匀,再加入 40wt%的聚酰胺后固化制得了环氧树脂/TiO2纳米复合材料。还有人将纳米SiO2粒子用硅烷偶联剂处理后,改性不饱和聚酯。  


    熔融共混:将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机械上熔融共混。如将PMMA和纳米SiO2粒子熔融共混后,双螺杆造粒制得纳米复合材料。又如利用偶联剂超声作用下处理纳米载银无机抗菌剂粒子,分散制得PP/抗菌剂、PET/抗菌剂、PA/抗菌剂等复合树脂,然后经熔融纺丝工艺加工成抗菌纤维。研究表明,将经过表面处理的纳米抗菌剂粒子通过双螺杆挤出机熔融混炼,在聚合物中可以达到纳米尺度分散,获得了具有良好综合性能的纳米抗菌纤维,对大肠杆菌、金黄色葡萄球菌的抗菌率达到95%以上(美国AATCC-100标准)。  


    机械共混:将偶联剂稀释后与碳纳米管混合,再与超高分子量聚乙烯(UHMWPE)混合放入三头研磨机中研磨两小时以上。将研磨混合物放入模具,热压,制得功能型纳米复合材料。  


    聚合法:利用纳米SiO2粒子填充(Poly(HEMA))制备了纳米复合材料。纳米SiO2粒子首先被羟乙基甲基丙烯酸(HEMA)功能化,然后与HEMA单体在悬浮体系中聚合。还有利用SiO2胶体表面带酸性,加入碱性单体4-乙烯基吡咯进行自由基聚合制得包覆型纳米复合材料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条