1) wave equation datum correction
波动方程基准面校正
1.
"Phase-shift time-shift" arithmetic was proposed by analyzing principle of wave equation datum correction.
在分析波动方程基准面校正原理的基础上,提出了"相移时移法"波场延拓算法,将相移算子分解为偏移算子、延拓算子和时移算子,并修改了Stolt公式,使得波动方程基准面校正能适应地表起伏剧烈、近地表速度纵横向变化剧烈的复杂地表条件。
2.
Mathematic and physical deduction of wave equation datum correction is able to decompose the phase-shift operator into migration operator, continuation operator and displacement operator, acquiring the method of wavefield continuation in f-k domain in a condition of vertical and lateral velocity-variation and giving 5 steps implementing wave equation datum correction.
本文根据波动方程基准面校正数理推导的结果,将相移算子分解为偏移算子、延拓算子和位移算子,从而得到纵横向变速条件下在频率—波数域实现波场延拓的方法,并给出实现波动方程基准面校正的5个具体步骤。
2) upward wave equation datum correction
波动方程向上基准面校正
4) wave-equation datuming
波动方程基准面延拓
1.
The recent progress in wave-equation datuming;
波动方程基准面延拓研究进展
5) relocatable datum correction
浮动基准面校正
6) wave equation datuming
波动方程静校正
1.
The development course of wave equation datuming is reviewed, and the principle and application conditions of wave equation datuming based on Born approximation are briefly described.
简要介绍了波动方程静校正的发展过程和基于Born近似的波动方程静校正的基本原理及其应用条件。
补充资料:波动方程
见双曲型偏微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条