1) finned heat-resistance
肋化热阻
1.
Charts for finned heat-resistance factor of straight triangular fin assembly attached to a plene wall;
平壁三角形直肋装置肋化热阻系数曲线图
2) drag reduction by riblets
肋条减阻
1.
This paper sums up the current drag reduction technologies via boundary layer control in the world,introduces the research on drag reduction by riblets,compliant coating and hydrophobic coat,and analyzes their mechanisms.
该文对当前世界范围内边界层控制法减阻技术进行了整理和归纳,着重介绍了肋条减阻、柔顺壁减阻和疏水减阻3种减阻技术的含义和研究现状,并分别对其减阻机理进行了系统分析,同时简要介绍了气幕减阻、壁面吸入法以及壁面加热和冷却法等其他减阻技术。
3) metal thermal intensity
肋化
4) heat conduction of straight fins
直肋导热
5) fin heat transfer
肋片传热
补充资料:传热学:热阻
热阻:
反映阻止热量传递的能力的综合参量。在传热学的工程应用中﹐为了满足生產工艺的要求﹐有时通过减小热阻以加强传热﹔而有时则通过增大热阻以抑制热量的传递。
当热量在物体内部以热传导的方式传递时﹐遇到的热阻称为导热热阻。对於热流经过的截面积不变的平板﹐导热热阻为L /(A )。其中L 为平板的厚度﹐A 为平板垂直於热流方向的截面积﹐为平板材料的热导率。
在对流换热过程中﹐固体壁面与流体之间的热阻称为对流换热热阻﹐1/(A )。其中为对流换热係数﹐A 为换热面积。两个温度不同的物体相互辐射换热时的热阻称为辐射热阻。如果两个物体都是黑体(见黑体和灰体)﹐且忽略两物体间的气体对热量的吸收﹐则辐射热阻为1/(A 1F 1-2)或1/(A 2F 2-1)。其中A 1和A 2为两个物体相互辐射的表面积﹐F 1-2和F 2-1为辐射角係数。
当热量流过两个相接触的固体的交界面时﹐界面本身对热流呈现出明显的热阻﹐称为接触热阻。產生接触热阻的主要原因是﹐任何外表上看来接触良好的两物体﹐直接接触的实际面积只是交界面的一部分(见图 接触热阻示意图 )﹐其餘部分都是缝隙。热量依靠缝隙内气体的热传导和热辐射进行传递﹐而它们的传热能力远不及一般的固体材料。接触热阻使热流流过交界面时﹐沿热流方向温度 T 发生突然下降﹐这是工程应用中需要儘量避免的现象。减小接触热阻的措施是﹕增加两物体接触面的压力﹐使物体交界面上的突出部分变形﹐从而减小缝隙增大接触面。在两物体交界面处涂上有较高导热能力的胶状物体──导热脂。
反映阻止热量传递的能力的综合参量。在传热学的工程应用中﹐为了满足生產工艺的要求﹐有时通过减小热阻以加强传热﹔而有时则通过增大热阻以抑制热量的传递。
当热量在物体内部以热传导的方式传递时﹐遇到的热阻称为导热热阻。对於热流经过的截面积不变的平板﹐导热热阻为L /(A )。其中L 为平板的厚度﹐A 为平板垂直於热流方向的截面积﹐为平板材料的热导率。
在对流换热过程中﹐固体壁面与流体之间的热阻称为对流换热热阻﹐1/(A )。其中为对流换热係数﹐A 为换热面积。两个温度不同的物体相互辐射换热时的热阻称为辐射热阻。如果两个物体都是黑体(见黑体和灰体)﹐且忽略两物体间的气体对热量的吸收﹐则辐射热阻为1/(A 1F 1-2)或1/(A 2F 2-1)。其中A 1和A 2为两个物体相互辐射的表面积﹐F 1-2和F 2-1为辐射角係数。
当热量流过两个相接触的固体的交界面时﹐界面本身对热流呈现出明显的热阻﹐称为接触热阻。產生接触热阻的主要原因是﹐任何外表上看来接触良好的两物体﹐直接接触的实际面积只是交界面的一部分(见图 接触热阻示意图 )﹐其餘部分都是缝隙。热量依靠缝隙内气体的热传导和热辐射进行传递﹐而它们的传热能力远不及一般的固体材料。接触热阻使热流流过交界面时﹐沿热流方向温度 T 发生突然下降﹐这是工程应用中需要儘量避免的现象。减小接触热阻的措施是﹕增加两物体接触面的压力﹐使物体交界面上的突出部分变形﹐从而减小缝隙增大接触面。在两物体交界面处涂上有较高导热能力的胶状物体──导热脂。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条