1) twofold lattice value fuzzy relation
双重格值Fuzzy关系
2) twofold fuzzy relation
双重Fuzzy关系
1.
This paper introduces the concept of the twofold fuzzy relation,and establishes the conclusions associatedwith the twofold fuzzy relation and its inherited mapping with fuzzy transformation and its generating propertiesetc.
本文引入双重Fuzzy关系的概念,并建立了双重Fuzzy关系及其诱导映射与Fuzzy变换、可生成性等问题之间的联系,进而讨论其一些有关性质。
3) fuzzy Green's relation
Fuzzy格林关系
4) Fuzzy guasi coincidence relation
Fuzzy重于关系
5) Interval-valued fuzzy relation
区间值Fuzzy关系
6) dual relationship
双重关系
1.
Influence of Ethics Education on Ethical Beliefs of Dual Relationship of Trainees Attending Training of Psychological Consultation
行业伦理教育对报考心理咨询师人员双重关系伦理意识的影响
2.
Starting from the limitations imposed by NASW(National Association of Social Workers) Code of Ethics of the United States on the relationship between the social worker and his/her client,this paper gives a complete introduction to the definition and categories of dual relationships and offers some suggestions about how to deal with dual relationships.
在实务领域中,当社会工作者与案主不单是两者之间的专业关系,而产生了朋友、雇主、师生、商业伙伴甚至性伙伴等关系的时候,他就陷入了双重关系的困境。
补充资料:昂萨格倒易关系
描述不可逆热力学过程的线性唯象定律中各系数间的倒易关系。它是粒子微观运动方程的时间反演不变性在宏观尺度上的反映。这个关系是1931年由L.昂萨格建立,后经H.B.G.卡西米尔发展,扩充了它的适用范围。
人们常用"流"和"力"来说明不可逆过程。在扩散过程中的物质流密度,热传导中的热流密度,化学反应中的反应速度等都称为流,用Ji(i=1,2,...,n)表示。引起流的相应力为浓度梯度、温度梯度、化学亲合力等用Xi(i=1,2,...,n)表示。在线性区它们的关系唯象地写为
唯象系数Lij为常数。昂萨格发现,唯象系数矩阵是对称的,即Lij=Lji,
这就是著名的昂萨格倒易关系。这个关系的存在不依赖于具体物质,或具体过程,在线性不可逆过程中具有普遍意义,因而成为线性区非平衡热力学的主要基础之一。
昂萨格倒易关系应用于实际问题时,得到了很好的验证。其中对温差电偶和力热现象的研究是它成功的突出例证。
温差电偶效应 用两种不同金属A、B焊接形成闭合回路,人们发现了塞贝克效应、珀耳帖效应、汤姆孙效应(见温差电现象)。利用昂萨格关系可以证明,塞贝克系数、珀耳帖系数、汤姆孙系数都满足普遍的关系式,即汤姆孙第一关系
和汤姆孙第二关系ΠAB=SABT。
而这两个关系已为实验证实,所以昂萨格关系的正确性也就得到了证实。
费德森效应 实验发现系统中不同区域的温度不仅造成热流,也会引起粒子流Jn=λ│ΔT│
式中λ称为热力系数。这种效应称为费德森效应,也叫热力效应。同时发现压差不仅引起粒子流,也产生热流JQ=K│Δp,
式中K称为力热系数。利用昂萨格关系可以证明K=λTv,
式中v为物质比容。尽管λ和K 随物质性质而异,但实验证实上述关系在不可逆过程的线性区是普遍成立的。
人们常用"流"和"力"来说明不可逆过程。在扩散过程中的物质流密度,热传导中的热流密度,化学反应中的反应速度等都称为流,用Ji(i=1,2,...,n)表示。引起流的相应力为浓度梯度、温度梯度、化学亲合力等用Xi(i=1,2,...,n)表示。在线性区它们的关系唯象地写为
唯象系数Lij为常数。昂萨格发现,唯象系数矩阵是对称的,即Lij=Lji,
这就是著名的昂萨格倒易关系。这个关系的存在不依赖于具体物质,或具体过程,在线性不可逆过程中具有普遍意义,因而成为线性区非平衡热力学的主要基础之一。
昂萨格倒易关系应用于实际问题时,得到了很好的验证。其中对温差电偶和力热现象的研究是它成功的突出例证。
温差电偶效应 用两种不同金属A、B焊接形成闭合回路,人们发现了塞贝克效应、珀耳帖效应、汤姆孙效应(见温差电现象)。利用昂萨格关系可以证明,塞贝克系数、珀耳帖系数、汤姆孙系数都满足普遍的关系式,即汤姆孙第一关系
和汤姆孙第二关系ΠAB=SABT。
而这两个关系已为实验证实,所以昂萨格关系的正确性也就得到了证实。
费德森效应 实验发现系统中不同区域的温度不仅造成热流,也会引起粒子流Jn=λ│ΔT│
式中λ称为热力系数。这种效应称为费德森效应,也叫热力效应。同时发现压差不仅引起粒子流,也产生热流JQ=K│Δp,
式中K称为力热系数。利用昂萨格关系可以证明K=λTv,
式中v为物质比容。尽管λ和K 随物质性质而异,但实验证实上述关系在不可逆过程的线性区是普遍成立的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条