1) Compressible nature
可压缩流特性
2) fluid compressibility
流体可压缩性
1.
The BEM equation for acoustic analysis in shallow water and the corresponding coupled FEMBEM vibration equation are established,and then the impacts of water depth and the fluid compressibility on the natural frequencies and mode shapes for underwater structures are discussed.
本文首先建立了浅水域声学边界元方程和相应的FEM/BEM耦合振动方程,探讨了水深对结构振动固有频率和振型的影响,流体可压缩性对结构振动固有频率的影响。
2.
The influonce of fluid compressibility on structural vibration in the half_space fluid domain is discussed.
本文探讨了流体可压缩性对半无限流体域中结构振动的影响。
3) incompressible viscous flows
不可压缩黏性流
1.
The element-free Galerkin method is applied to solve the incompressible viscous flows problem, which is described by the Navier-Stokes equation.
不可压缩黏性流问题一般采用Navier-Stokes方程来描述。
4) viscous compressible fluid
可压缩粘性流体
1.
The adaptive physical model on Coutte Flow based on a motional coordinate is presented,and a solution of a equation for velocity, temperature and rate of heat transfer of a viscous compressible fluid is obtained.
在基于动坐标系的库特剪切流的物理模型上 ,提出了两平板间可压缩粘性流体的温度 ,流速与热流速率间的关联式。
5) incompressible viscous flow
粘性不可压缩流
1.
A contrastive numerical simulation of three\|dimensional incompressible viscous flows was carried out using our own code with overlapping and non\|overlapping grids,respectively.
采用自主开发的三维粘性不可压缩流场计算程序对重叠对接与不重叠对接的流场分块求解方法进行了比较研究 。
2.
The second order full expansion Euler-Taylor-Galerkin finite element method and its appli-cation to the simulation of two dimensional incompressible viscous flow of low Reynolds number in complex geometry domain are presented.
深入考虑粘性不可压缩流Navier-Stokes方程中每个子项的作用,利用二阶Taylor全展开完成时间项向空间项的转化,采用时间推进和张量分析的方法推导了N-S方程的有限元离散格式。
6) Incompressible viscous flow
不可压缩粘性流
1.
A comparative study of the bilinear,biquadratic quadrilateral element and quadratic triangular element for solving incompressible viscous flows is presented.
比较了用于求解不可压缩粘性流的四边形双线性、双二次单元及三角形二次单元的性能,这些单元采用GLS稳定化有限元格式,而压力和速度采用等阶数插值。
补充资料:压缩变形特性
分子式:
CAS号:
性质:指材料受压缩时其压缩负荷大小与材料变形的关系。研究材料压缩变形特性时,通常用圆柱形试样,在圆柱上施加压缩负荷,测定其变形量,这时既可以测定定变形下所需的压缩负荷,也可以测定定负荷下试样的变形量。
CAS号:
性质:指材料受压缩时其压缩负荷大小与材料变形的关系。研究材料压缩变形特性时,通常用圆柱形试样,在圆柱上施加压缩负荷,测定其变形量,这时既可以测定定变形下所需的压缩负荷,也可以测定定负荷下试样的变形量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条