说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 汤浅理论
1)  the Yuasa theory
汤浅理论
2)  townsend theory
汤森理论
3)  shallow water theory
浅水理论
4)  On Context
浅论语境理论
5)  Townsend discharge theory
汤森放电理论
6)  Yukawa theory of nuclear forces
汤川核力理论
补充资料:汤森理论
      解释气体放电机制的最早理论。由英国物理学家J.S.E.汤森于1903年提出。汤森在实验中发现,当两平板电极之间所加电压增大到一定值时,极板间隙的气体中出现连接两个电极的放电通道,使原来绝缘的气体变成电导很高的气体,有放电电流通过,间隙被击穿。汤森用气体电离的概念解释这一现象。他设想有n0个自由电子在电场作用下由阴极向阳极运动,只要电场足够强,电子在与气体分子碰撞时会引起后者电离,发展成电子崩。若每个电子在电场中移动单位距离时产生的电离次数为α(汤森电离系数),则可推知n0个自由电子在由阴极向阳极运动中经过距离n后将增加到n0ead,而每个电子产生的正离子-电子对数为ead-1。正离子在电场作用下向阴极运动,设每个正离子撞击阴极时引起的电子发射(称二次电子发射)的概率为r,则n0个自由电子引起电离后产生的二次电子数为rn0(ead-1)。要使放电持续不断,则需使rn0(ead-1)=n0或r(ead-1)=1,这就是汤森自持放电的条件,又称汤森判别式。
  
  对于不同间隙介质都有不同的临界击穿电场强度Ec(大气中约30kV·cm-1)。间隙中的电场E低于Ec时,间隙不会击穿。在汤森判别式中,电离系数α 随外加电场强度E的增强而增大,因此电子的电离效应也加强。α 值必须足够大才能产生足够的电离次数及离子数,满足自持放电条件使间隙被击穿。实际过程比这要复杂一些,例如间隙中空间电荷的积累会引起电场畸变;阴极表面还存在光电发射和其他粒子轰击阴极表面的过程;间隙气体中还有光电离和电附着作用等。虽然自持放电包括的过程比较复杂,但判别式的形式仍是其中rm为包括了各种阴极表面过程的二次电子发射概率,μ为气体吸收系数。利用高速示波器可以测出放电发展过程中的电流变化。电流的周期性变化说明间隙中电离、阴极发射电子等一次次的循环。不满足自持条件时的放电,电流逐步减为零,此时间隙中气体未击穿,仍保持绝缘状态。汤森理论只适用于气压比较低、气压与极距的乘积(Pn)比较小的情况。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条