1) allele-specific amplification-Tm shif
等位基因特异扩增结合熔解曲线
1.
Here we will describe new methods such as denaturing high performance liquid chromatography(DHPLC),primer extension and time-of-flight mass spectrometry(TOF-MS),Tm-shift curve,allele-specific amplification-Tm shift,Molecular beacons and TaqMan.
当前,已建立了许多SNP分析方法,本文介绍变性高压液相色谱法、时间飞行质谱熔解曲线法、熔解温度曲线法、等位基因特异扩增结合熔解曲线法、分子信号和TaqMan等新的SNP分析方法。
2) Allele-specific amplification
等位基因特异扩增法
1.
Objective:To establish Allele-specific amplification(ASA-PCR)for study the distribution of MDR1 polymorphism in transplant patients.
目的:建立等位基因特异扩增法(Allele-Specific Amplification,ASA-PCR)研究移植患者多药耐药基因(multi-drug re- sistance gene,MDR1)多态性。
3) allele specific amplification
等位基因特异性扩增
1.
[Methods] A total of 100 healthy Liaoning Hans were studied by the use of PCR and allele specific amplification (ASA) techniques.
方法用聚合酶链反应及等位基因特异性扩增技术对100名辽宁地区汉族人的DRD4基因启动子区3个多态性进行了检测,并与其他人群做了比较。
4) Allele specific amplification
等位基因特异扩增
1.
Allele specific amplification (ASA) is a low-cost, robust technique that can be utilized to discriminate between the all.
本试验通过等位基因特异扩增(ASA)方法对9个香稻和3个非香稻品种(品系),以及3个香稻/非香稻组合的F1的香味基因,进行快速检测。
5) allele-specific amplification
等位基因特异性扩增
1.
Multiplex SNP typing using monotube allele-specific amplification
单管等位基因特异性扩增法同时测定多重单核苷酸多态性
2.
Microchip electrophoresis coupled with multiplex allele-specific amplification for typing multiple single nucleotide polymorphisms(SNPs) simultaneously
多重等位基因特异性扩增——微流控芯片电泳法同时测定多个单核苷酸多态性位点
3.
An accurate and effective method was developed for rapidly genotyping in a single tube, which was based on di-allele-specific amplification with artificially modified primers.
该方法在等位基因特异性扩增法的基础上,在内引物3′端引入了一个人工错配 碱基并在5′端附加一段“尾巴”作为引物的锚定部分,使扩增反应的特异性得到了提高。
6) allele specific amplification
等位基因特异扩增法
1.
An allele specific amplification based PCR method was built up for the detection of CYP2D6T allele which is a 1 795 T deletion on CYP2D6 gene and results in a function deficient enzyme.
利用等位基因特异扩增法的基本原理,建立了测定CYP2D6T的方法。
补充资料:熔解
熔解 fusion 物质由固相转变为液相的相变过程。在一定的压强下,固体(晶体)要加热到一定温度(熔点)才能熔解,熔解过程中温度不变,从外界吸热。单位质量晶体熔解成液体所吸收的热量称为熔解潜热,简称熔解热。晶体的熔解是其晶格粒子由规则排列转化为无序状态的过程,熔解热是破坏点阵结构所需的能量,可用来衡量晶体结合能的大小。 不同晶体的熔点不同,同一晶体的熔点还与熔解时的压强有关。在p-T图上表示熔点与压强关系的曲线称为熔解曲线,它是固、液相的分界线,曲线上各点表示固、液相平衡共存的各个状态。大多数晶体熔解时体积膨胀,熔点随压强增大而降低。熔点还与晶体纯度有密切关系,少量杂质往往可显著降低其熔点,合金的熔点就往往低于其中各金属成分的最低熔点。 非晶体固体如玻璃、石蜡、树脂、沥青、塑料等的熔解并不在特定温度下进行,无熔点可言。它们在熔解过程中随着温度的上升逐渐软化,最终变成液体。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条