1) coming into being in activity
活动生成
1.
From the viewpoint of sensation liberation, following the train of thought of human and human object coming into being in activity, with the fundamental judgement of aesthetic possibility depending on acquisition of objectives and the loss of objectives, Marx s Aesthetics have been established relation between aesthetics and human reality life.
感觉解放、活动生成、占有对象、失去对象美学等范畴具体体现了马克思美学的革命性、开放性、实践性 ,以及批判现实性 ,对当代美学发展具有重大的现实意
2) daily activities
生活活动
3) living cost
生活成本
1.
The explicit and latent living costs should also be fully considered.
文章认为,城市化的进程是一个消费增加和集聚的过程,因此主张:(1)落后地区的城市化,应首先着眼于发挥"本地型"消费在引致投资、增加收入、重塑经济形态、促进经济增长中的作用;(2)制定城市发展政策时应充分考虑城市化对居民显性和隐性生活成本的影响,从而为正确发挥政府作用、促进城市化的健康发展提供一个新的分析视角。
4) present life
现成生活
5) Rooting survival
生根成活
6) cost of living
生活成本
1.
The finding implies that we can use CPI to describe the city\'s Cost of Living in 1998 and the period 2000-2006.
研究发现,以1997年作为基年,1998年和2000-2006年中国公布的定基CPI与中国城镇居民生活成本指数不存在偏差;1997-2006年间,仅1999年存在5。
补充资料:Ansys模型生成
Ansys模型生成:
有限元分析的最终目地是数学地重现一个实际工程系统的行为。换言之,这分析必须是一个物理原型的准确数学模型。
从广义上,这模型包含所有的节点,单元,材料特性,实常量,边界条件,和用于描述这物理系统的其它特征。
Ansys模型生成有以下方法:
1,在Ansys创建一个实体模型。
2,直接生成。
3,输入一个在CAD创建的模型。
Ansys模型生成的典型步骤:
1,计划方案
在开始模型生成时,将有意无意地做一些将怎样对物理系统数学摹拟的决定:
分析目地是什麽?对物理系统的全部还是部分建模?模型包含多少细节?将用哪类单元?网格密度是多少?总之,要平衡好计算成本(CPU运算时间等)和分析结果的准确性。计划阶段的决定将很大程度上影响分析的成败。
2,确定分析目地,它依赖于教育程度,经验,专业判断。
3,选择模型类型,
线模型可用于2维或3维梁和管结构,也可做3维轴对称壳结构的2维模型。
通常用直接生成法产生模型。
2维实体模型用于薄的面结构(面应力),有恒定剖面的“无限长”结构(面应变),或轴对称实体结构。
3维壳模型用于3维薄壳结构。
3维实体模型用于既无恒定剖面又不是轴对称的实体结构
4,选择单元类型
线性单元(无中间节点),应用时要避免蜕变单元形状出现在关键区域。尽量避免用过度变形的线性单元
高级单元(有中间节点),对有蜕变单元形状(2维三角形单元,3维四面体单元)的结构分析,它会比线性单元产生更好的结果。
5,对结合不同单元的限制。
在直接结合不同单元时,若它们有不同的自由度,则分析运算时将不能在不同单元之间传递正确的力和力矩,因为它们在相交处不相容。
两个单元相兼容,它们必须有相同的自由度,相同数量和类型的位移自由度,旋转自由度,而且,这些自由度必须沿相交处单元边界上连续地相互叠合在一起。
6,充分利用对称性。
许多物体具有对称性,如重复对称,镜像对称,轴对称。利用对称性可以大大地减小模型的尺寸减少运算时间。
三维轴对称结构可以用等同的二维型式来代表。而二维轴对称分析比等同的三维分析更准确。
理论上一个完全轴对称模型只能承受轴对称载荷,然而在许多场合轴对称结构将承受非轴对称载荷,这时就要用一种特殊单元,轴对称谐单元如PLANE25, SHELL61, PLANE75, PLANE78, FLUID81, 和 PLANE83 。。
7,决定包含多少细节
在实体模型中不必要包含一些不重要的小细节,因为它们只会使模型更复杂。但是在一些结构中,象导角或孔等的小细节可能是最大应力集中的地方,这时它们就很重要,这取决于分析目地,必须对结构的预期行为有足够的理解以做出决定。
有限元分析的最终目地是数学地重现一个实际工程系统的行为。换言之,这分析必须是一个物理原型的准确数学模型。
从广义上,这模型包含所有的节点,单元,材料特性,实常量,边界条件,和用于描述这物理系统的其它特征。
Ansys模型生成有以下方法:
1,在Ansys创建一个实体模型。
2,直接生成。
3,输入一个在CAD创建的模型。
Ansys模型生成的典型步骤:
1,计划方案
在开始模型生成时,将有意无意地做一些将怎样对物理系统数学摹拟的决定:
分析目地是什麽?对物理系统的全部还是部分建模?模型包含多少细节?将用哪类单元?网格密度是多少?总之,要平衡好计算成本(CPU运算时间等)和分析结果的准确性。计划阶段的决定将很大程度上影响分析的成败。
2,确定分析目地,它依赖于教育程度,经验,专业判断。
3,选择模型类型,
线模型可用于2维或3维梁和管结构,也可做3维轴对称壳结构的2维模型。
通常用直接生成法产生模型。
2维实体模型用于薄的面结构(面应力),有恒定剖面的“无限长”结构(面应变),或轴对称实体结构。
3维壳模型用于3维薄壳结构。
3维实体模型用于既无恒定剖面又不是轴对称的实体结构
4,选择单元类型
线性单元(无中间节点),应用时要避免蜕变单元形状出现在关键区域。尽量避免用过度变形的线性单元
高级单元(有中间节点),对有蜕变单元形状(2维三角形单元,3维四面体单元)的结构分析,它会比线性单元产生更好的结果。
5,对结合不同单元的限制。
在直接结合不同单元时,若它们有不同的自由度,则分析运算时将不能在不同单元之间传递正确的力和力矩,因为它们在相交处不相容。
两个单元相兼容,它们必须有相同的自由度,相同数量和类型的位移自由度,旋转自由度,而且,这些自由度必须沿相交处单元边界上连续地相互叠合在一起。
6,充分利用对称性。
许多物体具有对称性,如重复对称,镜像对称,轴对称。利用对称性可以大大地减小模型的尺寸减少运算时间。
三维轴对称结构可以用等同的二维型式来代表。而二维轴对称分析比等同的三维分析更准确。
理论上一个完全轴对称模型只能承受轴对称载荷,然而在许多场合轴对称结构将承受非轴对称载荷,这时就要用一种特殊单元,轴对称谐单元如PLANE25, SHELL61, PLANE75, PLANE78, FLUID81, 和 PLANE83 。。
7,决定包含多少细节
在实体模型中不必要包含一些不重要的小细节,因为它们只会使模型更复杂。但是在一些结构中,象导角或孔等的小细节可能是最大应力集中的地方,这时它们就很重要,这取决于分析目地,必须对结构的预期行为有足够的理解以做出决定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条