1) comparision and estimation
比较与估计
2) comparative estimating method
比较估计法
3) comparative design estimate
设计比较估计
4) Comparison of Estimate Precision
估计精度比较
5) comparative design estimate
设计比较估算
6) evaluation and comparison
评估比较
1.
Using the grey system theory and the vector projection synthetically, a new model for the combat efficiency evaluation and comparison of EW system based on similarity to ideal grey relational projection was put forward.
针对电子战系统作战效能的评估比较问题,基于灰色系统理论和矢量投影方法,提出了一种新的基于理想灰关联投影的分析模型和算法,介绍了该方法的基本原理和一些基本概念,建立了系统作战效能与正、负理想作战效能之间接近程度的分析模型,总结了用该方法进行比较分析的一般步骤;并提出了一种基于效能区分度的比较灵敏度分析方法。
补充资料:Bayes估计量
Bayes估计量
Bayesian estimator
Bayes估计量【Bayesi助始廿ma.件;D自狱.。眨..界..] 用BayeS方法(Bayesian aPProach)由观察值对一未知参数所作的估计.统计问题使用这样的方法时,一般都假定未知参数所0 gR“是一具有给定先验分布7r=武do)的随机变量,决策空间D与集合0重合.且损失L(0,d)表示变量0与估计d的偏离.因此,函数L勿,d)通常假定为有形式L勿,d)=a(e)又(口一d),其中又是误差向量0一d的某个非负函数,若k二1,则常取又勿一d)={0一d}“(“>0).最有用且在数学上最方便的是平方损失函数L(口,d)=}‘一d1’.对这一损失函数,Bayes估计量(Ba卿决策函教(Bavesian dedsion function))占’二亡厂(x)定义为使最小总损失 !;‘p‘二·“,一,‘薯必,“一”‘·’2’〕口‘么,叮‘““,达到的函数,或与之等价,了是使最小条件损失 ,母‘E{[口一占(x)]2+“)达到的函数,由此推出,在平方损失函数的场合,B竹es估计量与后验均值占‘(x)=E勿{x)相等,而Bayesj双险(Bayes risk)为 。‘二,占‘)二E!D矿夕}x)]‘此处O(0}劝是后验分布的方差: o(口{x)二任{{口一E(0{x)12!,、}. 例设二=(x,,,二,戈),这里x,,,二,x。为具正态分布N勿,。’)的独立同分布变量,护己知,而未知参数0有正态分布N扭,铲).因为当x给定时口的后验分布为正态N(拜。,T:一、其中 n又。2一十“下一2 灿。二一—,,。一二n口‘一奋了一_ n口一汁~下且万=(x,十一+凡)/。,可知在平方损失函数{分一引’之下,Bayes估计量为占’(x)=线,而Bayes风险则为《二犷六伽铲十护).AH川畔即撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条