说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 项群分布
1)  even group distribution
项群分布
2)  items classification
项群分类
3)  binomial distribution
二项分布
1.
Several empirical Bayes Estimations on binomial distribution;
二项分布的几种经验Bayes估计方法
2.
Improvement of Stirling s formula and approximate calculation of probability of binomial distribution;
Stirling公式的改进及二项分布概率的近似计算
3.
Hypothesis test in the judgement on a binomial distribution and a Poisson distribution;
二项分布与泊松分布判别的假设检验
4)  Multinomial Distribution
多项分布
1.
A Study to the Confidence Region of Multinomial Distribution on the Condition of Large Sample Size;
大样本条件下多项分布未知参数置信域的研究
2.
Research on the relationship between multinomial distribution and multi-Poisson distribution, we got the sufficient and necessary condition of Poisson distribute obeyed for the non-negative multi-independent random variable X_1,X_2,…,X_n.
通过对多项分布与多元Poisson分布关系的研究,得到多元独立的非负整值随机变量X1,X2,…,Xn每一个服从Poisson分布的充分必要条件,并从另一个方面描述了二项分布与Poisson分布的内在关系。
3.
At last,the relations between multivariate Poisson distribution and multinomial distribution or multivariate normal distribution are given.
最后给出了多元Poisson分布与多项分布以及多元正态分布之间的关系。
5)  sense distribution
义项分布
1.
After constructing a sense distribution dictionary using WordNet and Brown corpus, the words in a topic could be put into seven classes.
根据W ordN et和它附带的B row n语料库构造了单词义项分布词典,再把检索主题中的单词按歧义性大小分为7类,通过计算平均单词容易度来度量检索主题的难度。
2.
After constructing a sense distribution dictionary using WordNet andBrown corpus,the words in a topic could be put into seven classes.
根据WordNet 和它附带的Brown 语料库构造了单词义项分布词典,然后把检索主题中的单词按歧义性大小分为七类,通过计算平均单词容易度来度量检索主题的难度。
6)  Binomical distribution
两项分布
补充资料:多项分布


多项分布
ultinoniial distribution g?polynomial distribution

  多项分布〔nl过山目画闯血方山团阅或p01ynom血ldistribu-tion;uo月”IloMH幼‘Hoep舰Ilpe几e几ellHe] 随机变量X:,…,X*的联合分布,它对于任意一组满足条件n,+…十。*二。,。j=0,…,n,j=1,…,k的非负整数摊:,…,n*,由下列公式定义 p{Xl二n,,二,X*=n*}= n! n一!‘’‘n众!其中n,,.,二,,*(,,)o,艺药一l)为分布的参数.多项分布是一种多元离散分布—满足X:+…+X,=。的随机向量(X、,…,X*)的分布(这个分布实质上是(k一l)维的,因为它在k维E谓Ud空间中是退化的).多项分布是二项分布(binorrnial曲川bution)的自然推广,后者即同于k=2的情形.这个分布名称的来由是因为概率(*)是(P:十…+p*)”多项展开式的通项.多项分布出现在如下的概率概形中.每个随机变量X‘是互不相容事件A,(j=1,2,…,k)之一在重复独立试验中发生的次数.如果事件Aj在每次试验中的概率为巧(j=1,…,k),那么概率(,)就等于在”次试验中事件A,,二,A*分别出现nl,…,n*次的概率.每个随机变量Xj有数学期望为。Pj且方差为”马(1一Pj)的二项分布. 随机向量(X,,…,X*)有数学期望(nP:,‘二,n,*)与协方差阵B=}lb,,11,其中 厂。P‘(l一P‘),i=j, b:=之i,j=1,…,k 贬一np,p,,i笋j,(因为艺李二1。。=。,故矩阵B的秩为k一1).多项分布的特征函数是 f(tl,…,t*)=(P le’r’+…+P*e’“)”.当n~的l付,有正规化分量 X,一nP: 艺一不益亡责一的向量(Yl,…,Y七)的分布,趋于某一多元正态分布(nom笼幻曲颐bution),而和 k 艺(l一夕‘)y) 口=I的分布(它在数理统计中常用来构造xZ检验(’chi-squared‘招t))趋于k一1自由度的x’分布(’chi-sq珑川刃‘distribution).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条