1) Euclidean space R_s~n
欧氏空间R_s~n
2) n-dimensional Euclidean space
n维欧氏空间
1.
Using theory of distance geometry,we discuss the problem about the locus of barycentre of a finite point set in the n-dimensional Euclidean space En,the main contribution of this paper is two theorems about this problem.
应用距离几何有关理论研究了n维欧氏空间En中有限点集的重心的轨迹问题,本文的主要结果是关于n维有限点集的重心的两个轨迹定理。
2.
Necessary and sufficient conditions are given on the symmetry of points and n-1 dimensional hyperplane of function of many variables in the n-dimensional Euclidean space.
在n维欧氏空间内,给出了多元函数分别关于点、n-1维超平面对称的充要条件。
3) n-dimensional sphere S~n
n维欧氏空间Rn
1.
In this paper, we set up the topological mapping between n-dimensional sphere S~n and extended space R*= R~n , where R~n is n-dimensional Euelid space and R~n is a new element.
本文从通常所说的球面与扩充平面(平面上添加一个新元素)间的对应关系入手,得到n维球面与n维扩充空间(n维欧氏空间Rn添加一个新元素)间的同胚关系,并用拓扑学知识阐明n维球面与n维欧氏空间Rn是不可能同胚的。
4) Euclidean n-space
欧氏n维空间
6) Euclid space
欧氏空间
1.
Important conclusions of Gram determinants in Euclid space;
Gram行列式在欧氏空间中几个重要结论
2.
By using the co-ordinate transform between the general base and the orthogonal base of the Euclid space, the current signal is decomposed to a series of orthogonal currents including a broad-sense fundamental current and a harmonic current.
利用欧氏空间普通基与正交基之间的坐标变换,将电流分解为两两正交的一个广义基波电流和一系列广义谐波电流,在此基础上提出了一种新的功率定义方法,使传统单相电路的功率理论成为本方法的一种特例。
3.
By the relation transvection,we obtain two necessary and sufficient conditions for the transformation being linear transformation in Euclid spaces,and out of it,we have got some conclusions.
借助内积关系 ,给出了欧氏空间的变换是线性变换的两个充要条件 ,并由此得到一些相关结论 。
补充资料:欧氏空间
见弯曲空间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条