说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> (幺)半群簇
1)  (Monoid)semigroup variety
(幺)半群簇
2)  monoid module
幺半群模
3)  monoid ['mɔnɔid]
幺半群
1.
Completely(α,β)-absolutely pure monoid;
完全(α,β)-绝对纯幺半群
2.
McCoy rings relative to a monoid;
相对于幺半群的McCoy环
3.
A note on a submonoid P of A~* as a free moniod;
关于自由幺半群A~*的子幺半群是自由的一点注记
4)  unique product monoid
u.p.-幺半群
5)  small monoid
小幺半群
6)  unipotent semigroup
幂幺半群
1.
The localization of semigroups with cetral idempotents and the smallest unipotent semigroup congruences;
幂等元位于中心的半群的局部化和最小幂幺半群同余
补充资料:半群簇


半群簇
variety of semi-groups

关于周期半群簇叭,下列条件等价(〔41):绷由A代himed巴半群的带组成;叭中的任意半群的每个挠类是子半群;绷不含Bnlndt半群B:(见周期半群(periodic~一gro叩)).子簇格L叭是模格的半群簇刃之和有限指数半群簇(特别地,小簇)均满足上述条件.小簇是局部有限的(locallyfl山te)(即由局部有限半群构成),当且仅当叭中的所有群的簇是局部有限的;小的局部有限群簇恰好是交叉簇(见群簇(嫩riety of gt)uPs)).关于其他的局部有限半群簇,见局部有限半群(]ocaUy finite~·group).由剩余有限半群组成的半群簇已被刻画(【3」). 所有半群簇的集合关于MaJI曰Ie.积(Mal堆七vproduct)是一个部分广群G .G中的幂等元是已知的,民这些幂等元的个数为9.由一组、v二0型恒等式所定义的全体半群簇的集合构成G中的一个极大广群(groupoid). 带有附加运算的半群的簇,例如,么半群(monoid)(有恒等元的半群)簇,带零的半群簇,逆半群簇等也已经被研究.半群簇【vari吻of胭111一沙阅ps;助几犷pyunM肋roo6Pa-3能1 由某一组恒等式或一组法则所确定的半群(sernl-gro叩)类(见代数系统簇(al罗b献s”ten巧,ydrietyof)).每个半群簇或者是周期的(详nodic)(即由周期半群组成的簇),或者是扩交换(。v曰℃。nlmuta七Ve)的(即包含所有交换半群的簇).半群簇的各种性质可利用某些类型的恒等式来分类.恒等式“=v称为正规的(11印训1)(也称为同型的(homotypical),正则的(祀gular),或一致的(uxl江brm)),如果出现于字“和v中的变量的集合相同,否则,称为非正规的(anoma】ous)(或异型的(lleterotyPical)).恒等式“=v称为平衡的(加!alleed),如果每个变量出现在字u和v中的次数相同.平衡恒等式的一个特殊情形是置换恒等式(详nnutation identlty)—如果u=x,二x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条